
Faunus

Jan 17, 2020

Contents

1 Introduction 1
1.1 About . 1
1.2 Quick Start . 1
1.3 Getting Help . 2

2 Installing 3
2.1 Using Conda . 3
2.2 Building from source code . 3

3 Development 7
3.1 Code Style . 7
3.2 Creating a conda package (development usage) . 7

4 Running Simulations 9
4.1 Input and Output . 9
4.2 Restarting . 10
4.3 Diagnostics . 10
4.4 Message Passing Interface (MPI) . 10
4.5 Python Interface . 11

5 Topology 13
5.1 Global Properties . 13
5.2 Atom Properties . 13
5.3 Molecule Properties . 14
5.4 Initial Configuration . 15
5.5 Equilibrium Reactions . 15

6 Energy 17
6.1 Infinite and NaN Energies . 17
6.2 External Pressure . 18
6.3 Nonbonded Interactions . 18
6.4 Electrostatics . 19
6.5 Pair Potentials . 21
6.6 Custom External Potential . 22
6.7 Bonded Interactions . 23
6.8 Geometrical Confinement . 24
6.9 Solvent Accessible Surface Area . 25

i

6.10 Penalty Function . 25
6.11 Constraining the system . 27

7 Monte Carlo Moves 29
7.1 Translation and Rotation . 29
7.2 Internal Degrees of Freedom . 30
7.3 Parallel Tempering . 31
7.4 Volume Move . 32
7.5 Reactive Canonical Monte Carlo . 32

8 Analysis 33
8.1 Density . 33
8.2 Structure . 34
8.3 Charge Properties . 35
8.4 Reaction Coordinate . 36
8.5 System Sanity . 37
8.6 System Energy . 37
8.7 Virtual Volume Move . 37
8.8 Widom Insertion . 37
8.9 Positions and Trajectories . 38

ii

CHAPTER 1

Introduction

1.1 About

Faunus is a general Monte Carlo simulation code, designed to be flexible, easy to use, and to modify. The code is
written in C++ and Python bindings are available. The development is a team effort with, in reverse chronological
order, many valiant contributions from:

Marco Polimeni, Vidar Aspelin, Stefan Hervø-Hansen, Richard Chudoba, Niels Kouwenhoven, Coralie Pasquier, Lukáš
Sukeník, Giulio Tesei, Alexei Abrikossov, João Henriques, Björn Stenqvist, Axel Thuresson, Robert Vácha, Magnus
Ullner, Chris Evers, Anıl Kurut, André Teixeira, Christophe Labbez, Ondrej Marsalek, Martin Trulsson, Björn Persson,
Mikael Lund

Should you find Faunus useful, please consider supporting us by crediting:

• Stenqvist et al. Molecular Simulation 2013, 39:1233 [citing articles].

• Lund, M. et al. Source Code Biol. Med., 2008, 3:1 [citing articles].

1.2 Quick Start

Simulations are set up using YAML or JSON files, see for example minimal.yml, for a Metropolis Monte Carlo
simulation of charged Lennard-Jones particles in a cubic PBC box. Running with

yason.py minimal.yml | faunus

produces an output file, out.json, with move statistics, system properties etc. The script yason.py merely
converts from YAML to JSON as the former, easier to read, is used in all examples. For more examples, see the
examples folder.

1

http://www.teokem.lu.se/~mikael
http://dx.doi.org/10/nvn
https://scholar.google.com/scholar?cites=5469022701720095838
http://dx.doi.org/10/dfqgch
https://scholar.google.com/scholar?cites=1996529474573979195
https://github.com/mlund/faunus/blob/master/examples/minimal.yml
https://github.com/mlund/faunus/tree/master/examples

Faunus

1.3 Getting Help

To open the user-guide in a browser, type:

faunus-manual

If you have questions, comments, or need help, create a ticket on our Github issue page.

2 Chapter 1. Introduction

https://github.com/mlund/faunus/issues

CHAPTER 2

Installing

2.1 Using Conda

For macOS and Linux x86-64, precompiled binary packages are available via (mini)conda:

conda config --add channels conda-forge
conda install faunus

In addition to the faunus executable, this installs a set of examples in share/faunus, as well as python bindings.
To update an existing installation, use

faunus --version # show version string
conda search faunus # show (new) revisions
conda upgrade faunus

For the adventurous, sporadically updated development versions can be installed with conda install -c
teokem faunus.

Starting from version 2.1, we adhere to semantic versioning.

2.2 Building from source code

Faunus is continuously tested on macOS/Linux, but should compile on most unix operating systems and possibly
under Cygwin (Windows).

2.2.1 Requirements

• CMake 3.11+

• C/C++14 compiler (Clang 3.5+, GCC 6+, etc.)

• Python 3.6+ with the following packages:

3

https://conda.io/docs/user-guide/install/index.html
https://semver.org
https://travis-ci.org/mlund/faunus

Faunus

– ruamel_yaml or yaml

The following are optional:

• jinja2

• pandoc

• pypandoc

• BeautifulSoup4

• Message Passing Interface (MPI)

macOS tip: Apple’s developer tools, Xcode, include clang and CMake can be installed with an Installer package from
Kitware, or using MacPorts, Homebrew, or (mini)conda

2.2.2 Compiling

Download the latest release or the developer branch and build using cmake:

cd faunus
cmake . [OPTIONS]
make faunus
make usagetips # requires `pandoc`, `pypandoc`, `BeautifulSoup4`

Use make help to see all build targets.

The following options are available:

2.2.3 Compiling the Manual

Pandoc is required to build the HTML manual:

make manual_html

In addition to pandoc, a TeX Live installation containing XeLaTeX is required to build the PDF manual. The manual
is supposed to be typeset with EB Garamond, Garamond Math and Fira Code fonts thus they have to be available in
your system. Alternatively, you can tweak the font options in the header.md file.

make manual

2.2.4 Python libraries in odd locations

Should there be multiple compilers or python distributions, be specific:

CC=/opt/bin/clang CXX=/opt/bin/clang++ cmake . \
-DPYTHON_EXECUTABLE=/opt/bin/python3 \
-DPYTHON_INCLUDE_DIR=/opt/include/python3.6 \
-DPYTHON_LIBRARY=/opt/lib/libpython3.6.dylib

For solving python issues on macOS, the linked python library can be probed and, if needed, renamed:

otool -L pyfaunus.so
install_name_tool -change libpython3.6.dylib \
$HOME/miniconda/lib/libpython3.6.dylib pyfaunus.so

4 Chapter 2. Installing

https://cmake.org/download
http://www.macports.org
https://brew.sh
https://conda.io/docs/user-guide/install/index.html
https://github.com/mlund/faunus/releases/latest
https://github.com/mlund/faunus/archive/master.zip
https://github.com/octaviopardo/EBGaramond12/tree/master/fonts/otf
https://github.com/YuanshengZhao/Garamond-Math/blob/master/Garamond-Math.otf
https://github.com/tonsky/FiraCode/releases/download/2/FiraCode_2.zip

Faunus

2.2.5 Resetting the build system

To change the compiler or for another reason reset the build system, do:

make clean
rm -fR CMakeCache.txt CMakeFiles

2.2. Building from source code 5

Faunus

6 Chapter 2. Installing

CHAPTER 3

Development

3.1 Code Style

If you plan to contribute to Faunus it is recommended to activate the pre-commit hook for automatic styling of all
changes:

cd faunus
./scripts/git-pre-commit-format install

This requires clang-format which may also be directly used in IDE’s such as CLion. In the top-level directory of
Faunus you will find the style configuration file .clang-format

Also, adhere to the following naming conventions:

3.2 Creating a conda package (development usage)

The basic steps for creating a conda package is outlined below, albeit details depend on the build environment. See
also the .travis.yml configuration file in the main repository.

conda config --add channels conda-forge
conda install conda-build anaconda-client
cd scripts/
conda-build .
anaconda login
anaconda upload -u USER ... # see output from build step

Instead of uploading to anaconda.org, install a local copy directly after the build step above:

conda install -c USER faunus --use-local

7

https://github.com/mlund/faunus/blob/master/.clang-format

Faunus

8 Chapter 3. Development

CHAPTER 4

Running Simulations

The main program for running simulations is faunus and should be available from the command line after installa-
tion. For general usage, type:

faunus --help

Input is read either from stdin or from a JSON formatted file. Some examples:

faunus < input.json # input from stdin
faunus -i in.json -o out.json -q # file input/output and be quiet

Via the script yason.py, see below, YAML formatted input can be passed:

yason.py in.yml | faunus # from yaml

4.1 Input and Output

Natively, input and output are JSON formatted:

{ "atomlist": [
{ "Na+": { "q": 1.0, "mw": 22.99 } }

]
}

However, via the helper script yason.py, JSON can be converted to/from YAML which is less verbose, more
readable and therefore used throughout the documentation:

atomlist:
- Na+: { q: 1.0, mw: 22.99 }

9

http://www.yaml.org
http://json.org/example.html
http://www.yaml.org

Faunus

4.1.1 Post-Processing

JSON formatted output can conveniently be converted to syntax highlighted YAML for better readability:

yason.py --color out.json

For further processing of output or input, JSON (and YAML) can be read by most programming languages. For
example in python:

import json
with open('out.json') as f:

d = json.load(f) # --> dict
print(d['atomlist'][0]["Na+"]["mw"]) # --> 22.99
^ ^ ^ ^
| | | |
| | | get mol. weight value
| | key is the atom name
| fist object in array
atomlist is an array of objects

4.2 Restarting

Restart files generated by the analysis function savestate contains the last system state (positions, groups etc.). To
start from the previously saved state, use:

faunus --input in.json --state state.json

4.3 Diagnostics

Faunus writes various status and diagnostic messages to the standard error output. The amount of messages can be
control with the --verbosity (-v) option ranging from completely suppressed messages to tracing all operations.
Only warnings and errors are shown by default. It may be useful to increase the verbosity level when debugging to
show status and debug information.

faunus --verbosity 5 --input in.json

Note this is an experimental feature, covering only a fraction of actions so far.

Tip: Redirect the standard error output to a log file.

faunus -v 5 -i in.json 2>> error.log

4.4 Message Passing Interface (MPI)

Only few routines in Faunus are currently parallelisable using MPI, for example parallel tempering, and penalty
function energies.

Running with MPI spawns nproc processes that may or may not communicate with each other. If nproc>1, input
and output files are prefixed with mpi{rank}. where {rank} is the rank or process number, starting from zero.

10 Chapter 4. Running Simulations

Faunus

The following starts two processes, reading input from mpi0.in.json and mpi1.in.json. All output files,
including those from any analysis are prefixed with mpi0. and mpi1..

mpirun -np 2 ./faunus -i in.json

If all processes take the same input:

mpirun -np 2 ./faunus --nopfx --input in.json
mpirun -np 2 --stdin all ./faunus < in.json

4.5 Python Interface

An increasing part of the C++ API is exposed to Python. For instance:

import pyfaunus
help(pyfaunus)

For more examples, see pythontest.py. Note that the interface is under development and subject to change.

4.5. Python Interface 11

https://github.com/mlund/faunus/blob/master/examples/pythontest.py

Faunus

12 Chapter 4. Running Simulations

CHAPTER 5

Topology

The topology describes atomic and molecular properties as well as processes and reactions.

5.1 Global Properties

The following keywords control temperature, simulation box size etc., and must be placed outer-most in the input file.

temperature: 298.15 # system temperature (K)
geometry:

type: cuboid # Cuboidal simulation container
length: [40,40,40] # cuboid dimensions (array or number)

mcloop: # number of MC steps (macro × micro)
macro: 5 # Number of outer MC steps
micro: 100 # Number of inner MC steps; total = 5 × 100 = 500

random: # seed for pseudo random number generator
seed: fixed # "fixed" (default) or "hardware" (non-deterministic)

5.1.1 Geometry

Below is a list of possible geometries, specified by type, for the simulation container, indicating if and in which
directions periodic boundary conditions (PBC) are applied. Origin ($0,0,0$) is always placed in the geometric center
of the simulation container.

5.2 Atom Properties

Atoms are the smallest possible particle entities with properties defined below.

A filename (.json) may be given instead of an atom definition to load from an external atom list. Atoms are loaded
in the given order, and if it occurs more than once, the latest entry is used.

Example:

13

Faunus

atomlist:
- Na: {q: 1.0, sigma: 4, eps: 0.05, dp: 0.4}
- Ow: {q: -0.8476, eps: 0.65, sigma: 3.165, mw: 16}
- my-external-atomlist.json
- ...

5.3 Molecule Properties

A molecule is a collection of atoms, but need not be associated as real molecules. Two particular modes can be
specified:

1. If atomic=true the atoms in the molecule are unassociated and is typically used to define salt particles or
other non-aggregated species. No structure is required, and the molecular center of mass (COM) is unspecified.

2. If atomic=false the molecule resembles a real molecule and a structure or trajectory is required.

Properties of molecules and their default values:

Example:

moleculelist:
- salt: {atoms: [Na,Cl], atomic: true}
- water:

structure: water.xyz
bondlist:
- harmonic: {index: [0,1], k: 100, req: 1.5}
- ...

- carbon_dioxide:
structure:
- O: [-1.162,0,0]
- C: [0,0,0]
- O: [1.162,0,0]

bondlist:
- harmonic: {index: [1,0], k: 8443, req: 1.162}
- harmonic: {index: [1,2], k: 8443, req: 1.162}
- harmonic_torsion: {index: [0,1,2], k: 451.9, aeq: 180}

excluded_neighbours: 2 # generates an exclusionlist as shown below
exclusionlist: [[0,1], [1,2], [0,2]] # redundant in this topology

- ...

5.3.1 Structure Loading Policies

When giving structures using the structure keyword, the following policies apply:

• structure can be a file name: file.@ where @=xyz|pqr|aam

• structure can be an array of atom names and their positions: - Mg: [2.0,0.1,2.0]

• structure can be a FASTA sequence: {fasta: [AAAAAAAK], k: 2.0; req: 7.0} which
generates a linear chain of harmonically connected atoms. FASTA letters are translated into three letter residue
names which must be defined in atomlist. Special letters: n=NTR, c=CTR, a=ANK.

• Radii in files are ignored; atomlist definitions are used.

• By default, charges in files are used; atomlist definitions are ignored. Use keepcharges=False to
override.

14 Chapter 5. Topology

https://en.wikipedia.org/wiki/FASTA_format

Faunus

• A warning is issued if radii/charges differ in files and atomlist.

• Box dimensions in files are ignored.

5.3.2 Nonbonded Interaction Exclusion

Some nonbonded interactions between atoms within a molecule may be excluded in the topology. Force fields almost
always exclude nonbonded interactions between directly bonded atoms. However other nonbonded interactions may
be excluded as well; refer to your force field parametrization. If a molecule contains overlapping hard spheres, e.g., if
the bond length is shorter than the spheres diameter, it is necessary to exclude corresponding nonbonded interactions
to avoid infinite energies.

The excluded nonbonded interactions can be given as an explicit list of atom pairs excludelist, or they can be
deduced from the molecules topology using the excluded_neighbours=n option: If the atoms are n or less
bonds apart from each other in the molecule, the nonbonded interactions between them are excluded. Both options
excluded_neighbours and exclusionlist can be used together making a union.

5.4 Initial Configuration

Upon starting a simulation, an initial configuration is required and must be specified in the section
insertmolecules as a list of valid molecule names. Molecules are inserted in the given order and may be
inactive. If a group is marked atomic, its atoms is inserted N times.

Example:

insertmolecules:
- salt: { N: 10 }
- water: { N: 256 }
- water: { N: 1, inactive: true }

The following keywords for each molecule type are available:

A filename with positions for the N molecules can be given with positions. The file must contain exactly N-times
molecular positions that must all fit within the simulation box. Only positions from the file are copied; all other
information is ignored.

5.4.1 Overlap Check

Random insertion is repeated until there is no overlap with the simulation container boundaries. Overlap between
particles is ignored and for i.e. hard-sphere potentials the initial energy may be infinite.

5.5 Equilibrium Reactions

Faunus supports density fluctuations, coupled to chemical equilibria with explicit and/or implicit particles via their
chemical potentials as defined in the reactionlist detailed below, as well as in atomlist and moleculelist.
The initial key describes a transformation of reactants (left of =) into products (right of =) that may be a mix of atomic
and molecular species.

An implicit reactant or product is an atom which is included in the equilibrium constant but it is not represented
explicitly in the simulation cell. A common example is the acid-base equilibrium of the aspartic acid (treated here as
atomic particle):

5.4. Initial Configuration 15

Faunus

reactionlist:
- "HASP = ASP + H": { pK: 4.0 }

where H is defined as implicit in the atomlist:

- H: { implicit: true, activity: 1e-7 }

and we set pK equal to the pKa, i.e., $$ K_a = \frac{ a_{\mathrm{ASP}} a_{\mathrm{H}} }{ a_{\mathrm{HASP}}
}. $$ To simulate at a given constant pH, H is specified as an implicit atom of activity $10^{-\mathrm{pH}}$ and the
equilibrium is modified accordingly (in this case K is divided by a_{H}). An acid-base equilibrium, or
any other single-atom ID transformation (see the Move section), can also be coupled with the insertion/deletion of a
molecule. For example,

reactionlist:
- "HASP + Cl = ASP + H": { pK: 4.0 }
- "= Na + Cl": { }

where Na and Cl are included in the moleculelist as

- Cl: {atoms: [cl], atomic: true, activity: 0.1 }
- Na: {atoms: [na], atomic: true, activity: 0.1 }

In this case K is both divided by a_{H} and a_{Cl}, so that the actual equilibrium constant
used by the speciation move is

$$ K’ = \frac{K_a}{a_{ \mathrm{H} } a_{ \mathrm{Cl} } } = \frac{ a_{\mathrm{ASP}} }{ a_{\mathrm{HASP}}
a_{\mathrm{Cl}} }. $$

In an ideal system, the involvement of Cl in the acid-base reaction does not affect the equilibrium since the grand
canonical ensemble ensures that the activity of Cl matches its concentration in the simulation cell.

Reaction format:

• all species, +, and = must be surrounded by white-space

• atom and molecule names cannot overlap

• you may repeat species to match the desired stoichiometry

Available keywords:

The neutral keyword is needed for molecular groups containing titratable atoms. If neutral is set to true, the
activity of the neutral molecule should be specified in moleculelist.

16 Chapter 5. Topology

CHAPTER 6

Energy

The system energy, or Hamiltonian, consists of a sum of potential energy terms,

$$ \mathcal{H}_{sys} = U_1 + U_2 + . . . $$

The energy terms are specified in energy at the top level input and evaluated in the order given. For example:

energy:
- isobaric: {P/atm: 1}
- sasa: {molarity: 0.2, radius: 1.4 }
- confine: {type: sphere, radius: 10, molecules: [water]}
- nonbonded:

default: # applied to all atoms
- lennardjones: {mixing: LB}
- coulomb: {type: plain, epsr: 1}
Na CH: # overwrite specific atom pairs
- wca: { mixing: LB }

- maxenergy: 100
- ...

The keyword maxenergy can be used to skip further energy evaluation if a term returns a large energy change (in
kT), which will likely lead to rejection. The default value is infinity.

Note: Energies in MC may contain implicit degrees of freedom, i.e. be temperature-dependent, effective potentials.
This is inconsequential for sampling density of states, but care should be taken when interpreting derived functions
such as energies, entropies, pressure etc.

6.1 Infinite and NaN Energies

In case one or more potential energy terms of the system Hamiltonian returns infinite or NaN energies, a set of
conditions exists to evaluate the acceptance of the proposed move:

• always reject if new energy is NaN (i.e. division by zero)

17

Faunus

• always accept if energy change is from NaN to finite energy

• always accept if the energy difference is NaN (i.e. from infinity to minus infinity)

Note: These conditions should be carefully considered if equilibrating a system far from equilibrium.

6.2 External Pressure

This adds the following pressure term (see i.e. Frenkel and Smith, Chapter 5.4) to the Hamiltonian, appropriate for
MC moves in $\ln V$:

$$ U = PV - k_BT\left (N + 1 \right) \ln V $$

where N is the total number of molecules and atomic species.

6.3 Nonbonded Interactions

This term loops over pairs of atoms, i, and j, summing a given pair-wise additive potential, u_{ij},

$$ U = \sum_{i=0}^{N-1}\sum_{j=i+1}^N u_{ij}(\textbf{r}_j-\textbf{r}_i)$$

Using nonbonded, potentials can be arbitrarily mixed and customized for specific particle combinations.
nonbonded_splined internally splines the combined potential in an interval [rmin,rmax] determined by the
following policies:

• rmin is decreased towards zero until the potential reaches u_at_rmin=20 kT

• rmax is increased until the potential reaches u_at_rmax=1e-6 kT

If outside the interval, infinity or zero is returned, respectively. Finally, the spline precision can be controlled with
utol=1e-5 kT.

Below is a description of possible nonbonded methods. For simple potentials, the hard coded variants are often the
fastest option. For better performance, it is recommended to use nonbonded_splined in place of the more robust
nonbonded method. To check that the combined potential is splined correctly, set to_disk=true to print to
A-B_tabulated.dat the exact and splined combined potentials between species A and B.

6.3.1 Mass Center Cut-offs

For cut-off based pair-potentials working between large molecules, it can be efficient to use mass center cut-offs
between molecular groups, thus skipping all pair-interactions. A single cut-off can be used between all molecules
(default), or specified for specific combinations:

- nonbonded:
cutoff_g2g:

default: 40
protein water: 60

6.3.2 OpenMP Control

If compiled with OpenMP, the following keywords can be used to control parallelisation for non-bonded interactions.
The best combination depends on the simulated system size and composition. Currently, parallelisation is disabled by
default.

18 Chapter 6. Energy

http://doi.org/c7zg

Faunus

- nonbonded:
openmp: [g2g, i2all]

6.4 Electrostatics

This is a multipurpose potential that handles several electrostatic methods. Beyond a spherical real-space cutoff,
R_c, the potential is zero while if below,

$$ \tilde{u}^{(zz)}_{ij}({\bf r}) = \frac{e^2 z_i z_j }{ 4\pi\epsilon_0\epsilon_r |{\bf r}| }\mathcal{S}(q) $$

where ${\bf r} = {\bf r}_j - {\bf r}_i$, and tilde indicate that a short-range function $\mathcal{S}(q=|{\bf r}|/R_c)$ is
used to trucate the interactions. The available short-range functions are:

Internally $\mathcal{S}(q)$ is splined whereby all types evaluate at similar speed. For the poisson potential,

$$ \acute{q} = \frac{1-\exp\left(2\kappa R_c q\right)}{1-\exp\left(2\kappa R_c\right)} $$

which as the inverse Debye length, $\kappa\to 0$ gives $\acute{q}=q$. The poisson scheme can generate a number
of other truncated pair-potentials found in the litterature, depending on C and D. Thus, for an infinite Debye length,
the following holds:

6.4.1 Debye Screening Length

A background screening due to implicit ions can be added by specifying the keyword debyelength to the schemes

• yukawa

• ewald

• poisson

The former is an alias for poisson with C=1, and D=-1 which gives a plain and shifted Coulomb potential with
exponential screening. If shift=false, the potential is left unshifted and any given cutoff is ignored and instead
set to infinity.

6.4.2 Multipoles

If type=coulomb is replaced with type=multipole the electrostatic energy will in addition to monopole-
monopole interactions include contributions from monopole-dipole, and dipole-dipole interactions. Multipolar prop-
erties of each particle is specified in the Topology. The zahn and fennell approaches have undefined dipolar
self-energies and are therefore not recommended for such systems.

The ion-dipole interaction is described by

$$ \tilde{u}^{(z\mu)}_{ij}({\bf r}) = -\frac{ez_i\left(\mu_j\cdot \hat{\bf r}\right) }{|{\bf r}|^2} \left(\mathcal{S}(q)

• q\mathcal{S}^{\prime}(q) \right) $$

where $\hat{\bf r} = {\bf r}/|{\bf r}|$, and the dipole-dipole interaction by

$$ \tilde{u}^{\mu\mu}_{ij}({\bf r}) = -\left (\frac{3 (\boldsymbol{\mu}_i \cdot \hat{\bf r})
\left(\boldsymbol{\mu}_j\cdot\hat{\bf r}\right) - \boldsymbol{\mu}_i\cdot\boldsymbol{\mu}_j }{|{\bf r}|^3}\right)
\left(\mathcal{S}(q) - q\mathcal{S}^{\prime}(q) + \frac{q^2}{3}\mathcal{S}^{\prime\prime}(q) \right) -
\frac{\left(\boldsymbol{\mu}_i\cdot\boldsymbol{\mu}_j\right)}{|{\bf r}|^3}\frac{q^2}{3}\mathcal{S}^{\prime\prime}(q).
$$

6.4. Electrostatics 19

Faunus

6.4.3 Self-energies

When using coulomb or multipole, an electrostatic self-energy term is automatically added to the Hamiltonian.
The monopole and dipole contributions are evaluated according to

$$ U_{self} = -\frac{1}{2}\sum_i^N\sum_{*\in{z,\mu}} \lim_{|{\bf r}_{ii}|\to 0}\left(u^{(**)}_{ii}({\bf r}_{ii})

• \tilde{u}^{(**)}_{ii}({\bf r}_{ii}) \right) $$

where no tilde indicates that $\mathcal{S}(q)\equiv 1$ for any q.

6.4.4 Ewald Summation

If type is ewald, terms from reciprocal space; surface energies; and self energies are automatically added to the
Hamiltonian, activating additional keywords:

The added energy terms are:

$$ U_{\text{reciprocal}} = \frac{2\pi f}{V} \sum_{ {\bf k} \ne {\bf 0}} A_k \vert Q^{q\mu} \vert^2 $$

$$ U_{\text{surface}} = \frac{ 2\pi f }{ (2\varepsilon_{surf} + 1) V } \left(\left|\sum_{j}q_j{\bf r}_j\right|^2 + 2
\sum_j q_i {\bf r}_j \cdot \sum_j \boldsymbol{\mu}_j + \left| \sum_j \boldsymbol{\mu}_j \right|^2 \right) $$

where

$$ f = \frac{1}{4\pi\varepsilon_0\varepsilon_r} \quad\quad V=L_xL_yL_z $$

$$ A_k = \frac{e^{-(k^2 + \kappa^2)/4\alpha^2}}{k^2} \quad \quad Q^{q\mu} = Q^{q} + Q^{\mu} $$

$$ Q^{q} = \sum_{j}q_je^{i({\bf k}\cdot {\bf r}j)} \quad Q^{\mu} = \sum{j}i({\boldsymbol{\mu}}_j\cdot {\bf k})
e^{i({\bf k}\cdot {\bf r}_j)} $$

$$ {\bf k} = 2\pi\left(\frac{n_x}{L_x} , \frac{n_y}{L_y} ,\frac{n_z}{L_z} \right), {\bf n} \in \mathbb{Z}^3 $$

Like many other electrostatic methods, the Ewald scheme also adds a self-energy term as described above. In the case
of isotropic periodic boundaries (ipbc=true), the orientational degeneracy of the periodic unit cell is exploited to
mimic an isotropic environment, reducing the number of wave-vectors to one fourth compared with PBC Ewald. For
point charges, IPBC introduce the modification,

$$ Q^q = \sum_j q_j \prod_{\alpha\in{x,y,z}} \cos \left(\frac{2\pi}{L_{\alpha}} n_{\alpha} r_{\alpha,j} \right) $$

while for point dipoles (currently unavailable),

$$ Q^{\mu} = \sum_j \boldsymbol{\mu}_j \cdot \nabla_j \left(\prod_{ \alpha \in { x,y,z } } \cos \left (
\frac{2\pi}{L_{\alpha}} n_{\alpha} r_{\alpha,j} \right) \right) $$

6.4.5 Mean-Field Correction

For cuboidal slit geometries, a correcting mean-field, external potential, $\varphi(z)$, from charges outside the box
can be iteratively generated by averaging the charge density, $\rho(z)$, in dz-thick slices along z. This correction
assumes that all charges interact with a plain Coulomb potential and that a cubic cutoff is used via the minimum image
convention.

To enable the correction, use the akesson keyword at the top level of energy:

The density is updated every nstep energy calls, while the external potential can be updated slower (nphi) since it
affects the ensemble. A reasonable value of nstep is system dependent and can be a rather large value. Updating the
external potential on the fly leads to energy drifts that decrease for consecutive runs. Production runs should always
be performed with fixed=true and a well converged $\rho(z)$.

At the end of simulation, file is overwritten unless fixed=true.

20 Chapter 6. Energy

http://doi.org/css8
http://dx.doi.org/10/dhb9mj

Faunus

6.5 Pair Potentials

In addition to the Coulombic pair-potentials described above, a number of other pair-potentials can be used. Through
the C++ API or the custom potential explained below, it is easy to add new potentials.

6.5.1 Charge-Nonpolar

The energy when the field from a point charge, z_i, induces a dipole in a polarizable particle of unit-less excess
polarizability, $\alpha_j=\left (\frac{\epsilon_j-\epsilon_r}{\epsilon_j+2\epsilon_r}\right) a_j^3$, is

$$ \beta u_{ij} = -\frac{\lambda_B z_i^2 \alpha_j}{2r_{ij}^4} $$

where a_j is the radius of the non-polar particle and α_j is set in the atom topology, alphax. For non-
polar particles in a polar medium, α_i is a negative number. For more information, see J. Israelachvili’s book,
Chapter 5.

Limitations: Charge-polarizability products for each pair of species is evaluated once during construction and based
on the defined atom types.

6.5.2 Cosine Attraction

An attractive potential used for coarse grained lipids and with the form,

$$ \beta u(r) = -\epsilon \cos^2 \left (\frac{\pi(r-r_c)}{2w_c} \right) $$

for $r_c\leq r \leq r_c+w_c$. For $r<r_c$, $\beta u=-\epsilon$, while zero for $r>r_c+w_c$.

6.5.3 Assorted Short Ranged Potentials

The potentials below are often used to keep particles apart and/or to introduce stickiness. The atomic interaction
parameters, e.g., σ_i and ϵ_i, are taken from the topology.

If several potentials are used together and different values for the coefficients are desired, an aliasing of the parameters’
names can be introduced. For example by specifying sigma: sigma_hs, the potential uses the atomic value
sigma_hs instead of sigma, as shown in example below. To avoid possible conflicts of parameters’ names with
future keywords of Faunus, we recommend following naming scheme: property_pot, where property is either
sigma or eps and pot stands for the potential abbreviation, i.e, hs, hz, lj, sw, and wca.

Mixing (combination) rules can be specified to automatically parametrize heterogeneous interactions. If not described
otherwise, the same rule is applied to all atomic parameters used by the potential. No meaningful defaults are defined
yet, hence always specify the mixing rule explicitly, e.g., arithmetic for hardsphere.

For convenience, the abbreviation LB can be used instead of lorentz_berthelot.

Custom parameter values can be specified to override the mixing rule for a given pair, as shown in the example bellow.

- lennardjones:
mixing: LB
custom:

- Na Cl: {eps: 0.2, sigma: 2}
- K Cl: { ... }

- hertz:
mixing: LB
eps: eps_hz

(continues on next page)

6.5. Pair Potentials 21

https://www.sciencedirect.com/science/book/9780123751829
https://www.sciencedirect.com/science/book/9780123751829
http://dx.doi.org/10/chqzjk

Faunus

(continued from previous page)

custom:
- Na Cl: {eps_hz: 0.2, sigma: 2}

- hardsphere:
mixing: arithmetic
sigma: sigma_hs
custom:

- Na Cl: {sigma_hs: 2}

6.5.4 SASA (pair potential)

This calculates the surface area of two intersecting particles or radii R and r to estimate an energy based on
transfer-free-energies (TFE) and surface tension. The total surface area is calculated as

$$ A = 4\pi \left (R^2 + r^2 \right) - 2\pi \left (Rh_1 + rh_2 \right) $$

where h_1 and h_2 are the heights of the spherical caps comprising the lens formed by the overlapping spheres.
For complete overlap, or when far apart, the full area of the bigger sphere or the sum of both spheres are returned. The
pair-energy is calculated as:

$$ u_{ij} = A \left (\gamma_{ij} + c_s \varepsilon_{\text{tfe},ij} \right) $$

where γ_{ij} and $\varepsilon_{\text{tfe},ij}$ are the arithmetic means of tension and tfe provided in
the atomlist.

Note that SASA is strictly not additive and this pair-potential is merely a poor-mans way of approximately take into
account ion-specificity and hydrophobic/hydrophilic interactions. Faunus offers also a full, albeit yet experimental
implementation of [Solvent Accessible Surface Area] energy.

6.5.5 Custom

This takes a user-defined expression and a list of constants to produce a runtime, custom pair-potential. While perhaps
not as computationally efficient as hard-coded potentials, it is a convenient way to access alien potentials. Used in
combination with nonbonded_splined there is no overhead since all potentials are splined.

The following illustrates how to define a Yukawa potential:

custom:
function: lB * q1 * q2 / r * exp(-r/D) # in kT
constants:

lB: 7.1 # Bjerrum length
D: 30 # Debye length

The function is passed using the efficient ExprTk library and a rich set of mathematical functions and logic is available.
In addition to user-defined constants, the following symbols are defined:

6.6 Custom External Potential

This applies a custom external potential to atoms or molecular mass centra using the ExprTk library syntax.

In addition to user-defined constants, the following symbols are available:

If com=true, charge refers to the molecular net-charge, and x,y,z the mass-center coordinates. The following
illustrates how to confine molecules in a spherical shell of radius, r, and thickness dr:

22 Chapter 6. Energy

http://www.partow.net/programming/exprtk/index.html
http://www.partow.net/programming/exprtk/index.html

Faunus

customexternal:
molecules: [water]
com: true
constants: {radius: 15, dr: 3}
function: >

var r2 := x^2 + y^2 + z^2;
if (r2 < radius^2)

1000 * (radius-sqrt(r2))^2;
else if (r2 > (radius+dr)^2)

1000 * (radius+dr-sqrt(r2))^2;
else

0;

6.7 Bonded Interactions

Bonds and angular potentials are added via the keyword bondlist either directly in a molecule definition (topology)
for intra-molecular bonds, or in energy->bonded where the latter can be used to add inter-molecular bonds:

moleculelist:
- water: # TIP3P

structure: "water.xyz"
bondlist: # index relative to molecule

- harmonic: { index: [0,1], k: 5024, req: 0.9572 }
- harmonic: { index: [0,2], k: 5024, req: 0.9572 }
- harmonic_torsion: { index: [1,0,2], k: 628, aeq: 104.52 }

energy:
- bonded:

bondlist: # absolute index; can be between molecules
- harmonic: { index: [56,921], k: 10, req: 15 }

Bonded potential types:

Note: $\mu V T$ ensembles and Widom insertion are currently unsupported for molecules with bonds.

6.7.1 Harmonic

$$ u(r) = \frac{1}{2}k(r-r_{\mathrm{eq}})^2 $$

6.7.2 Finite Extensible Nonlinear Elastic

Finite extensible nonlinear elastic potential long range repulsive potential.

$$ u(r) = \begin{cases} -\frac{1}{2} k r_{\mathrm{max}}^2 \ln \left [1-(r/r_{\mathrm{max}})^2 \right], & \text{if
} r < r_{\mathrm{max}} \ \infty, & \text{if } r \geq r_{\mathrm{max}} \end{cases} $$

Note: It is recommend to only use the potential if the initial configuration is near equilibrium, which prevalently
depends on the value of rmax. Should one insist on conducting simulations far from equilibrium, a large displacement
parameter is recommended to reach finite energies.

6.7. Bonded Interactions 23

Faunus

6.7.3 Finite Extensible Nonlinear Elastic + WCA

Finite extensible nonlinear elastic potential long range repulsive potential combined with the short ranged Weeks-
Chandler-Anderson (wca) repulsive potential. This potential is particularly useful in combination with the
nonbonded_cached energy.

$$ u(r) = \begin{cases} -\frac{1}{2} k r_{\mathrm{max}}^2 \ln \left [1-(r/r_{\mathrm{max}})^2 \right] +
u_{\mathrm{wca}}, & \text{if } 0 < r \leq 2^{1/6}\sigma \ -\frac{1}{2} k r_{\mathrm{max}}^2 \ln \left [1-
(r/r_{\mathrm{max}})^2 \right], & \text{if } 2^{1/6}\sigma < r < r_{\mathrm{max}} \ \infty, & \text{if } r \geq
r_{\mathrm{max}} \end{cases} $$

It is recommended to only use this potential if the initial configuration is near equilibrium, which prevalently de-
pends on the value of rmax. Should one insist on conducting simulations far from equilibrium, a large displacement
parameter is recommended to reach finite energies.

6.7.4 Harmonic torsion

$$ u(r) = \frac{1}{2}k(\alpha - \alpha_{\mathrm{eq}})^2 $$

6.7.5 Cosine based torsion (GROMOS-96)

$$ u(r) = \frac{1}{2}k(\cos(\alpha) - \cos(\alpha_{{\mathrm{eq}}}))^2 $$

6.7.6 Proper periodic dihedral

$$ u(r) = k(1 + \cos(n\phi - \phi_{\mathrm{syn}})) $$

6.8 Geometrical Confinement

Confines molecules in a given region of the simulation container by applying a harmonic potential on exterior atom
positions, \mathbf{r}_i:

$$ U = \frac{1}{2} k \sum_{i}^{\text{exterior}} f_i $$

where f_i is a function that depends on the confinement type, and k is a spring constant. The latter may be
infinite which renders the exterior region strictly inaccessible. During equilibration it is advised to use a finite spring
constant to drive exterior particles inside the region. Should you insist on equilibrating with $k=\infty$, ensure that
displacement parameters are large enough to transport molecules inside the allowed region, or all moves may be
rejected. Further, some analysis routines have undefined behavior for configurations with infinite energies.

Available values for type and their additional keywords:

The scale option will ensure that the confining radius is scaled whenever the simulation volume is scaled. This could
for example be during a virtual volume move (analysis) or a volume move in the NPT ensemble.

where $\mathbf{d}=(1,1,0)$ and \circ is the entrywise (Hadamard) product.

where δr are distances to the confining, cuboidal faces. Note that the elements of low must be smaller than or
equal to the corresponding elements of high.

24 Chapter 6. Energy

Faunus

6.9 Solvent Accessible Surface Area

Note that the implementation of Solvent Accessible Surface Area potential is considered experimental. The code is
untested, unoptimized, and the configuration syntax below can change. The FreeSASA library option has to be enabled
when [compiling].

Calculates the free energy contribution due to

1. atomic surface tension

2. co-solute concentration (typically electrolytes)

via a SASA calculation for each atom, as implemented in the FreeSASA library.

The energy term is:

$$ U = \sum_i^N A_{\text{sasa},i} \left (\gamma_i + c_s \varepsilon_{\text{tfe},i} \right) $$

where c_s is the molar concentration of the co-solute; γ_i is the atomic surface tension; and $\varep-
silon_{\text{tfe},i}$ the atomic transfer free energy, both specified in the atom topology with tension and tfe,
respectively.

6.10 Penalty Function

This is a version of the flat histogram or Wang-Landau sampling method where an automatically generated bias or
penalty function, $f(\mathcal{X}^d)$, is applied to the system along a one dimensional ($d=1$) or two dimensional
($d=2$) reaction coordinate, \mathcal{X}^d, so that the configurational integral reads,

$$ Z(\mathcal{X}^d) = e^{-\beta f(\mathcal{X}^d)} \int e^{-\beta \mathcal{H}(\mathcal{R}, \mathcal{X}^d)} d
\mathcal{R}. $$

where \mathcal{R} denotes configurational space at a given \mathcal{X}. For every visit to a state along the
coordinate, a small penalty energy, f_0, is added to $f(\mathcal{X}^d)$ until Z is equal for all \mathcal{X}.
Thus, during simulation the free energy landscape is flattened, while the true free energy is simply the negative of the
generated bias function,

$$ \beta A(\mathcal{X}^d) = -\beta f(\mathcal{X}^d) = -\ln\int e^{-\beta \mathcal{H}(\mathcal{R}, \mathcal{X}^d)}
d \mathcal{R}. $$

Flat histogram methods are often attributed to Wang and Landau (2001) but the idea appears in earlier works, for
example by Hunter and Reinhardt (1995) and Engkvist and Karlström (1996).

To reduce fluctuations, f_0 can be periodically reduced (update, scale) as f converges. At the end of simula-
tion, the penalty function is saved to disk as an array ($d=1$) or matrix ($d=2$). Should the penalty function file be
available when starting a new simulation, it is automatically loaded and used as an initial guess. This can also be used
to run simulations with a constant bias by setting $f_0=0$.

Example setup where the x and y positions of atom 0 are penalized to achieve uniform sampling:

energy:
- penalty:

f0: 0.5
scale: 0.9
update: 1000
file: penalty.dat
coords:
- atom: {index: 0, property: "x", range: [-2.0,2.0], resolution: 0.1}
- atom: {index: 0, property: "y", range: [-2.0,2.0], resolution: 0.1}

6.9. Solvent Accessible Surface Area 25

http://dx.doi.org/10/dbjh
https://freesasa.github.io/
http://dx.doi.org/10/bbdg7j
http://dx.doi.org/10/fns6dq
http://dx.doi.org/10/djjk8z

Faunus

Options:

The coordinate, \mathcal{X}, can be freely composed by one or two of the types listed in the next section (via
coords).

6.10.1 Reaction Coordinates

The following reaction coordinates can be used for penalising the energy and can further be used when analysing
the system (see Analysis). Please notice that atom id’s are determined by the order of appearance in the atomlist
whereas molecular id’s follow the order of insertion specified in insertmolecules.

Atom Properties

Molecule Properties

Notes:

• the molecular dipole moment is defined with respect to the mass-center

• for angle, the principal axis is the eigenvector corresponding to the smallest eigenvalue of the gyration tensor

• Rinner can be used to calculate the inner radius of cylindrical or spherical vesicles. $d^2=\bf{r} \cdot$dir
where \bf{r} is the position vector

• L/R can be used to calculate the bending modulus of a cylindrical lipid vesicle

• Rg is calculated as the square-root of the sum of the eigenvalues of the gyration tensor, S. $$ S =
\frac{1}{\sum_{i=1}^{N} m_{i}} \sum_{i=1}^{N} m_{i} \bf{t_i} \bf{t_i^T} $$ where $\bf{t_i} = \bf{r_i} -
\bf{cm}$, $\bf{r_i}$ is the coordinate of the ith atom, m_i is the mass of the ith atom, \bf{cm} is the
mass center of the group and N is the number of atoms in the molecule.

System Properties

The enclosing cuboid is the smallest cuboid that can contain the geometry. For example, for a cylindrical simulation
container, Lz is the height and Lx=Ly is the diameter.

6.10.2 Multiple Walkers with MPI

If compiled with MPI, the master process collects the bias function from all nodes upon penalty function update.
The average is then re-distributed, offering linear parallelization of the free energy sampling. It is crucial that the
walk in coordinate space differs in the different processes, e.g., by specifying a different random number seed; start
configuration; or displacement parameter. File output and input are prefixed with mpi{rank}.

The following starts all MPI processes with the same input file, and the MPI prefix is automatically appended to all
other input and output:

yason.py input.yml | mpirun --np 6 --stdin all faunus -s state.json

Here, each process automatically looks for mpi{nproc}.state.json.

26 Chapter 6. Energy

http://dx.doi.org/10/b5pc4m

Faunus

6.11 Constraining the system

Reaction coordinates can be used to constrain the system within a range using the constrain energy term. Step-
ping outside the range results in an inifinite energy, forcing rejection. For example,

energy:
- constrain: {type: molecule, index: 0, property: end2end, range: [0,200]}

Tip: placing constrain at the top of the energy list is more efficient as the remaining energy terms are skipped
should an infinite energy arise.

6.11. Constraining the system 27

Faunus

28 Chapter 6. Energy

CHAPTER 7

Monte Carlo Moves

A simulation can have an arbitrary number of MC moves operating on molecules, atoms, the volume, or any other
parameter affecting the system energy. Moves are specified in the moves section at the top level input. For example:

moves:
- moltransrot: { molecule: water, dp: 2.0, repeat: N,

dprot: 1.0, dir: [1,1,0] }
- volume: { dV: 0.01 }
- ...

random: { seed: hardware }

The pseudo-random number engine used for MC moves can be seeded in three ways,

The last option is used to restore the state of the engine as saved along with normal simulation output as a string
containing a lenghty list of numbers. If initialization from a previously saved state fails – this may happen if generated
on another operating system – a warning is issued and the seed falls back to fixed.

7.1 Translation and Rotation

The following moves are for translation and rotation of atoms, molecules, or clusters. The dir keyword restricts
translational directions which by default is set to [1,1,1], meaning translation by a unit vector, randomly picked
on a sphere, and scaled by a random number in the interval [0, dp]. If dir=[1,1,0] the unit vector is instead
picked on a circle (here x, y) and if dir=[0,0,1] on a line (here z).

7.1.1 Molecular

This will simultaneously translate and rotate a molecular group by the following operation

$$ \textbf{r}^N_{trial} = \mbox{Rot}(\textbf{r}^N) + \delta $$

where \mbox{Rot} rotates dprot$\cdot \left (\zeta-\frac{1}{2} \right)$ radians around a random unit vector em-
anating from the mass center, ζ is a random number in the interval $[0,1[$, and δ is a random unit vector

29

Faunus

scaled by a random number in the interval [0,dp]. A predefined axis of rotation can be specified as dirrot. For ex-
ample, setting dirrot to [1,0,0], [0,1,0] or [0,0,1] results in rotations about the $x-$, $y-$, and $z-$axis, respectively.
Upon MC movement, the mean squared displacement will be tracked.

7.1.2 Atomic

As moltransrot but instead of operating on the molecular mass center, this translates and rotates individual atoms
in the group. The repeat is set to the number of atoms in the specified group and the displacement parameters dp and
dprot for the individual atoms are taken from the atom properties defined in the topology. Atomic rotation affects
only anisotropic particles such as dipoles, spherocylinders, quadrupoles etc.

7.1.3 Cluster Move

This will attempt to rotate and translate clusters of molecular molecules defined by a distance threshold between
mass centers. The threshold can be specified as a single number or as a complete list of combinations. For
simulations where small molecules cluster around a large macro-molecules it can be useful to use the satellites
keyword which denotes a list of molecules that can be part of a cluster, but cannot be the cluster nucleus or starting
point. All molecules listed in satellites must be part of molecules. A predefined axis of rotation can be
specified as dirrot. For example, setting dirrot to [1,0,0], [0,1,0] or [0,0,1] results in rotations about the $x-$,
$y-$, and $z-$axis, respectively.

The move is associated with bias, such that the cluster size and composition remain unaltered. If a cluster is larger
than half the simulation box length, only translation will be attempted.

Example:

cluster:
molecules: [protein, cations]
satellites: [cations]
threshold:

protein protein: 25
protein cations: 15
cations cations: 0

dp: 3
dprot: 1

Restrictions: Currently, the number of molecules must be constant throughout simulation, i.e. grand canonical
schemes are unsupported.

7.2 Internal Degrees of Freedom

7.2.1 Charge Move

This performs a fractional charge move on a specific atom.

Limitations: This move changes the particle charge and therefore cannot be used with splined pair-potentials where
the initial charges from are read from atomlist. Instead, use a hard-coded variant like nonbonded_coulomblj
etc.

30 Chapter 7. Monte Carlo Moves

topology
http://dx.doi.org/10/cj9gnn

Faunus

7.2.2 Conformational Swap

This will swap between different molecular conformations as defined in the Molecule Properties with traj and
trajweight If defined, the weight distribution is respected, otherwise all conformations have equal intrinsic weight.
Upon insertion, the new conformation is randomly oriented and placed on top of the mass-center of an exising
molecule. That is, there is no mass center movement.

7.2.3 Pivot

Performs a rotation around a random, harmonic bond vector in molecule, moving all atoms either before or after the
bond with equal probability. Current implementation assumes unbranched chains with all atoms as links, i.e., no side
chains are present. For long polymers (compared to the box size), a large displacement parameter may cause problems
with mass center calculation in periodic systems. This can be caught with the sanity analysis and should it occur,
try one of the following:

• enable skiplarge

• decrease dprot

• increase the simulation container.

The first option will simply reject troublesome configurations and the final output contains information of the skipped
fraction. Skipping is unphysical so make sure the skipped fraction is small.

The default value of repeat is the number of harmonic bonds in the molecule (multiplied by the number of
molecules).

Known limitations: Chain bonds have to be ordered sequentially in the topology.

7.2.4 Crankshaft

Performs a rotation of a chain segment between two randomly selected atoms in the molecule.

The default value of repeat is the number of atoms in the molecule minus two (multiplied by the number of
molecules).

7.3 Parallel Tempering

We consider an extended ensemble, consisting of n sub-systems or replicas, each in a distinct thermodynamic state
(different Hamiltonians) and with the total energy

$$ U = \sum_i^n\mathcal{H}_i(\mathcal{R}_i) $$

The parallel tempering move performs a swap move where coordinate spaces (positions, volume) between random,
neighboring sub-systems, i and j, are exchanged,

$$ \mathcal{R}_i^{\prime} = \mathcal{R}_j \quad \text{and} \quad \mathcal{R}_j^{\prime} = \mathcal{R}_i $$

and the energy change of the extended ensemble, $\Delta U_{i\leftrightarrow j}$, is used in the Metropolis acceptance
criteria.

Parallel tempering requires compilation with MPI and the number of replicas, n, exactly matches the number of pro-
cesses. Each replica prefixes input and output files with mpi0., mpi1., etc. and only exchange between neighboring
processes is performed.

Note: Parallel tempering is currently limited to systems with constant number of particles, N.

7.3. Parallel Tempering 31

topology.html#molecule-properties

Faunus

7.4 Volume Move

Performs a random walk in logarithmic volume,

$$ V^{\prime} = e^{\ln V + \left (\zeta-\frac{1}{2} \right)\cdot dV } $$

and scales:

1. molecular mass centers

2. positions of free atoms (groups with atomic=true)

by $(V^{\prime}/V)^{1/3}$. This is typically used for the NPT ensemble, and for this an additional pressure term
should be added to the Hamiltonian. In the case of isochoric scaling, the total volume is kept constant and dV
refers to an area change and reported output statistics on volume should be regarded as area. The table below explains
the scaling behavior in different geometries:

Warning: Untested for cylinders, slits.

7.5 Reactive Canonical Monte Carlo

The speciation move handles density fluctuations and particle transformations and is the main move for particle in-
sertion, deletion, and swapping used in (semi)-grand canonical ensembles. A reaction from reactionlist is
randomly picked from the topology and is either propagated forward or backward. In Faunus, the total number of
atoms and molecules is constant, but these can be either active or inactive. Deleting a molecule simply deactivates it,
while insertion vice versa activates an inactive molecule. Thus, it is important that the capacity or reservoir of particles
(active plus inactive) is sufficiently large to allow for fluctuations. This is ensured using insertmolecules (see
Topology). A runtime warning will be given, should you run low on particles. Besides deleting/inserting molecules
(mono- or polyatomic), the speciation move performs reactions involving a single-atom ID transformation (e.g., acid-
base reactions). In this case, an particle of type A (part of a mono- or polyatomic molecule) is randomly picked from
the system and all its properties, except its position, are replaced with those of an atom of type B. Such ID transorma-
tions can also involve the addition/deletion of molecules or implicit atoms. For a reaction $$ \sum_i \nu_i M_i = 0 $$
where M_i is the chemical symbol and ν_i is the stoichiometric coefficient of species i (positive for products
and negative for reagents), the contribution of a speciation move to the energy change is $$ \beta \Delta U = - \sum_i
\ln{ \left (\frac{ N_i! }{(N_i+\nu_i)!} V^{\nu_i} \right) } - \ln{ \prod_i a_i^{\nu_i} }, $$ where N_i is the number
of particles of species i in the current state and a_i is the activity of species i.

For more information, see the Topology section and doi:10/fqcpg3.

Warning: The speciation move is under construction and subject to change.

32 Chapter 7. Monte Carlo Moves

https://doi.org/10/fqcpg3

CHAPTER 8

Analysis

Faunus can perform on-the-fly analysis during simulation by allowing for an arbitrary number of analysis functions to
be added. The list of analysis is defined in the analysis section at the top level input:

analysis:
- systemenergy: {file: energy.dat, nstep: 500, nskip: 2000}
- xtcfile: {file: traj.xtc, nstep: 1000}
- widom: {molecule: water, ninsert: 20, nstep: 50}
- molrdf: {name1: water, name2: water, nstep: 100,

dr: 0.1, dim: 3, file: rdf.dat}
- ...

Note: all analysis methods support the nstep keyword that defines the interval between sampling points and the
nskip keyword that defines the number of initial steps that are excluded from the analysis. In addition all analysis
provide output statistics of number of sample points, and the relative run-time spent on the analysis.

8.1 Density

8.1.1 Bulk Density

This calculates the average density, $\langle N_i/V \rangle$ of molecules and atoms which may fluctuate in e.g.
the isobaric ensemble or the Grand Canonical ensemble. For atomic groups, densities of individual atom types are
reported. The analysis also files probability density distributions of atomic and polyatomic molecules as well as of
atoms involved in id transformations, e.g., acid-base equilibria. The filename format is rho-@name.dat.

8.1.2 Density Profile

Calculates the summed density of atoms in spherical, cylindrical or planar shells around origo which by default is
the center of the simulation box:

$$ \rho(r) = \frac{\langle N(r) \rangle}{V(r)} $$

33

Faunus

The sum of coefficients in dir determines the volume element normalisation:

This can be used to obtain charge profiles, measure excess pressure etc.

8.1.3 Density Slice

Calculates the density in cuboidal slices of thickness dz along the z axis. If an atom name is specified for the option
atomcom, the z-position of each atom is calculated with respect to the center of mass of the atoms of the given type.

8.2 Structure

8.2.1 Atomic $g(r)$

Samples the pair correlation function between atom id’s i and j,

$$ g_{ij}(r) = \frac{ N_{ij}(r) }{ \sum_{r=0}^{\infty} N_{ij}(r) } \cdot \frac{ \langle V \rangle }{ V(r) } $$

where $N_{ij}(r)$ is the number of observed pairs, accumulated over the entire ensemble, in the separation interval
$[r, r+dr]$ and $V(r)$ is the corresponding volume element which depends on dimensionality, dim.

By specifying slicedir, the RDF is calculated only for atoms within a slice of given thickness. For example,
with slicedir=[0,0,1] and thickness=2, the RDF is calculated for atoms with z-coordinates differing by
less than 2 Å. This quasi-2D RDF in the xy-plane should be normalized with dim=2.

8.2.2 Molecular $g(r)$

Same as atomrdf but for molecular mass-centers.

8.2.3 Dipole-dipole Correlation

Sample the dipole-dipole angular correlation, $\langle \pmb{\hat{\mu}}(0)\cdot \pmb{\hat{\mu}}(r) \rangle$, be-
tween dipolar atoms and as a function of separation, r. In addition, the radial distribution function, $g(r)$ is sampled
and saved to {file}.gofr.dat.

8.2.4 Structure Factor

The isotropically averaged static structure factor between N point scatterers is calculated using the Debye formula,

$$ S(q) = 1 + \frac{2}{N} \left \langle \sum_{i=1}^{N-1}\sum_{j=i+1}^N \frac{\sin(qr_{ij})}{qr_{ij}} \right \rangle
$$

The selected molecules can be treated either as single point scatterers (com=true) or as a group of individual
point scatterers of equal intensity, i.e. with a form factor of unity.

The explicit scheme is recommended for cuboids with PBC and the calculation is performed by explicitly av-
eraging the following equation over the 3+6+4 directions obtained by permuting the crystallographic index [100],
[110], [111] to define the scattering vector $\mathbf{q} = 2\pi p/L(h,k,l)$ where $p=1,2,\dots,p_{max}$.

$$ S(q) = \frac{1}{N} \left < \left (\sum_i^N \sin(\mathbf{qr}_i) \right)^2 + \left (\sum_j^N \cos(\mathbf{qr}_j)
\right)^2 \right > $$

The sampled q-interval is always $\left [2\pi/L„ 2\pi p_{max} \sqrt{3} / L \right]$, L being the box side length.
Currently only cubic boxes are supported. For more information, see doi:10.1063/1.449987.

34 Chapter 8. Analysis

http://doi.org/dmb9wm
http://dx.doi.org/10.1063/1.449987

Faunus

8.2.5 Atomic Inertia Eigenvalues

This calculates the inertia eigenvalues for all particles having a given id. The inertia tensor is defined as

$$ I = \sum_{i=1}^N m_i (| \bf{t_i} |^2 \mathrm{I} - \bf{t_i} \bf{t_i}^T) $$

where $\bf{t_i} = \bf{r_i} - \bf{cm}$, $\bf{r_i}$ is the coordinate of the ith particle, \bf{cm} is the position
of the mass center of the whole group of atoms, m_i is the molecular weight of the ith particle, \bf{I} is the
identity matrix and N is the number of atoms.

8.2.6 Inertia Tensor

This calculates the inertia eigenvalues and the principal axis for a range of atoms within a molecular group of given
index. Atom coordinates are considered with respect to the mass center of the group. For protein complex, the
analysis can be used to calculate the principal axes of the constituent monomers, all originating at the mass center of
the complex. The inertia tensor is defined as

$$ I = \sum_{i=1}^N m_i (| \bf{t_i} |^2 \mathrm{I} - \bf{t_i} \bf{t_i}^T) $$

where $\bf{t_i} = \bf{r_i} - \bf{cm}$, $\bf{r_i}$ is the coordinate of the ith particle, \bf{cm} is the position
of the mass center of the whole group of atoms, m_i is the molecular weight of the ith particle, \bf{I} is the
identity matrix and N is the number of atoms.

8.2.7 Polymer Shape

This calculates the radius of gyration, end-to-end distance, and related fluctuations for all groups defined in
molecules.

8.3 Charge Properties

8.3.1 Molecular Multipoles

Calculates average molecular multipolar moments and their fluctuations.

8.3.2 Multipole Moments

For a range of atoms within a molecular group of given index, this calculates the total charge and dipole moment, as
well as the eigenvalues and the major axis of the quadrupole tensor. Atom coordinates are considered with respect to
the mass center of the group. For a protein complex, the analysis can be used to calculate, e.g., the dipole vectors of
the constituent monomers, all originating at the mass center of the complex. The quadrupole tensor is defined as

$$ Q = \frac{1}{2} \sum_{i=1}^N q_i (3 \bf{t_i} \bf{t_i}^T - | \bf{t_i} |^2 \mathrm{I}) $$

where $\bf{t_i} = \bf{r_i} - \bf{cm}$, $\bf{r_i}$ is the coordinate of the ith particle, \bf{cm} is the position of
the mass center of the whole group of atoms, q_i is the charge of the ith particle, \bf{I} is the identity matrix
and N is the number of atoms.

8.3.3 Electric Multipole Distribution

This will analyse the electrostatic energy between two groups as a function of their mass center separation. Sampling
consists of the following:

8.3. Charge Properties 35

Faunus

1. The exact electrostatic energy is calculated by explicitly summing Coulomb interactions between charged par-
ticles

2. Each group - assumed to be a molecule - is translated into a multipole (monopole, dipole, quadrupole)

3. Multipolar interaction energies are calculated, summed, and tabulated together with the exact electrostatic inter-
action energy. Ideally (infinite number of terms) the multipoles should capture full electrostatics

The points 1-3 above will be done as a function of group-to-group mass center separation, R and moments on
molecule a and b with charges q_i in position \boldsymbol{r}_i with respect to the mass center are calculated
according to:

$$ q_{a/b} = \sum_i q_i \quad \quad \boldsymbol{\mu}_{a/b} = \sum_i q_i\mathbf{r_i} $$

$$ \boldsymbol{Q}_{a/b} = \frac{1}{2} \sum_i q_i\mathbf{r_i} \mathbf{r_i}^T $$

And, omitting prefactors here, the energy between molecule a and b at R is:

$$ u_{\text{ion-ion}} = \frac{q_aq_b}{R} \quad \quad u_{\text{ion-dip}} = \frac{q_a \boldsymbol{\mu}_b
\boldsymbol{R}}{R^3} + . . . $$

$$ u_{\text{dip-dip}} = \frac{\boldsymbol{\mu_a}\boldsymbol{\mu_b} }{ R^3 } - \frac{3 (\boldsymbol{\mu_a}
\cdot \boldsymbol{R}) (\boldsymbol{\mu_b}\cdot\boldsymbol{R}) }{R^5} $$

$$ u_{\text{ion-quad}} = \frac{ q_a \boldsymbol{R}^T \boldsymbol{Q}_b \boldsymbol{R} }{R^5}-\frac{q_a
\mbox{tr}(\boldsymbol{Q}_b) }{R^3}+ . . . $$

$$ u_{\text{total}} = u_{\text{ion-ion}} + u_{\text{ion-dip}} + u_{\text{dip-dip}} + u_{\text{ion-quad}} $$

$$ u_{\text{exact}} = \sum_i^a\sum_j^b \frac{q_iq_j}{ | \boldsymbol{r_i} - \boldsymbol{r_j} | } $$

During simulation, the above terms are thermally averaged over angles, co-solute degrees of freedom etc. Note also
that the moments are defined with respect to the mass center, not charge center. While for globular macromolecules
the difference between the two is often small, the latter is more appropriate and is planned for a future update.

The input keywords are:

8.3.4 Charge Fluctuations

For a given molecule, this calculates the average charge and standard deviation per atom, and the most probable species
(atom name) averaged over all present molecules. A PQR file of a random molecule with average charges and most
probable atomic species can be saved.

8.4 Reaction Coordinate

This saves a given reaction coordinate (see Penalty Function in Energy) as a function of steps. The output file has
three columns with steps; the value of the reaction coordinate; and the cummulative average of all preceding values.

The folowing example prints the mass center z coordinate of the first molecule to disk every 100th steps:

- reactioncoordinate:
{nstep: 100, file: cmz.dat, type: molecule, index: 0, property: com_z}

In the next example, the Angle between the principal molecular axis and the xy-plane is reported by diagonalising
the gyration tensor to find the principal moments:

- reactioncoordinate:
{nstep: 100, file: angle.dat, type: molecule, index: 0, property: angle, dir: [0,

→˓0,1]}

36 Chapter 8. Analysis

Faunus

8.4.1 Processing

In the example above we saved two properties as a function of steps. To join the two files and generate the average
angle as a function of z, the following python code may be used:

import numpy as np
from scipy.stats import binned_statistic

def joinRC(xfile, yfile, bins):
x = np.loadtxt(xfile, usecols=[1])
y = np.loadtxt(yfile, usecols=[1])
means, edges, bins = binned_statistic(x,y,'mean',bins)
return (edges[:-1] + edges[1:]) / 2, means

cmz, angle = joinRC('cmz.dat', 'angle.dat', 100)
np.diff(cmz) # --> cmz resolution; control w. `bins`

8.5 System Sanity

It is wise to always assert that the simulation is internally sane. This analysis checks the following and aborts if insane:

• all particles are inside the simulation boundaries

• molecular mass centers are correct

• . . . more to be added.

To envoke, use for example - sanity: {nstep: 1} by default, nstep=-1, meaning it will be run at the
end of simulation, only. This is not a particularly time-consuming analysis and we recommend that it is enabled for
all simulations.

8.6 System Energy

Calculates the energy contributions from all terms in the Hamiltonian and outputs to a file as a function of steps. If
filename ends with .csv, a comma separated value file will be saved, otherwise a simple space separated file with a
single hash commented header line. All units in k_BT.

8.7 Virtual Volume Move

Performs a virtual volume move by scaling the simulation volume to $V+\Delta V$ along with molecular mass centers
and atomic positions. The excess pressure is evaluated as a Widom average:

$$ p^{ex} = \frac{k_BT}{\Delta V} \ln \left\langle e^{-\delta u / k_BT} \right\rangle_{NVT} $$

For more advanced applications of volume perturbations - pressure tensors, surface tension etc., see here.

8.8 Widom Insertion

This will insert a non-perturbing ghost molecule into the system and calculate a Widom average to measure the free
energy of the insertion process, i.e. the excess chemical potential:

8.5. System Sanity 37

http://doi.org/cppxt6
http://doi.org/ckfh
http://doi.org/dkv4s6

Faunus

$$ \mu^{ex} = -k_BT \ln \left\langle e^{-\delta u/k_BT} \right\rangle_0 $$

where δu is the energy change of the perturbation and the average runs over the unperturbed ensemble. If the
molecule has atomic=true, δu includes the internal energy of the inserted group. This is useful for example
to calculate the excess activity coefficient of a neutral salt pair. Upon insertion, random positions and orientations are
generated. For use with rod-like particles on surfaces, the absz keyword may be used to ensure orientations on only
one half-sphere.

Important: Exactly one inactive molecule must be added to the simulation using the inactive keyword when
inserting the initial molecules in the topology.

8.9 Positions and Trajectories

8.9.1 Save State

Saves the current configuration or the system state to file.

If the suffix is json (text) or ubj (binary), a single state file that can be used to restart the simulation is saved with
the following information:

• topology: atom, molecule, and reaction definitions

• particle and group properties incl. positions

• geometry

• state of random number generator (if saverandom=true)

8.9.2 XTC trajectory

Generates a Gromacs XTC trajectory file with particle positions and box dimensions as a function of steps. Both active
and inactive atoms are saved.

8.9.3 Charge-Radius trajectory

Most trajectory file formats do not support a fluctuating number of particles. For each nstep, this analysis files
charge and radius information for all particles. Inactive particles are included with zero charge and radius.

Using a helper script for VMD (see scripts/) this information can be loaded to visualise flutuating charges and or
number of particles. The script should be sourced from the VMD console after loading the trajectory, or invoked when
launching VMD:

vmd confout.pqr traj.xtc -e scripts/vmd-qrtraj.tcl

38 Chapter 8. Analysis

topology
http://ubjson.org

	Introduction
	About
	Quick Start
	Getting Help

	Installing
	Using Conda
	Building from source code

	Development
	Code Style
	Creating a conda package (development usage)

	Running Simulations
	Input and Output
	Restarting
	Diagnostics
	Message Passing Interface (MPI)
	Python Interface

	Topology
	Global Properties
	Atom Properties
	Molecule Properties
	Initial Configuration
	Equilibrium Reactions

	Energy
	Infinite and NaN Energies
	External Pressure
	Nonbonded Interactions
	Electrostatics
	Pair Potentials
	Custom External Potential
	Bonded Interactions
	Geometrical Confinement
	Solvent Accessible Surface Area
	Penalty Function
	Constraining the system

	Monte Carlo Moves
	Translation and Rotation
	Internal Degrees of Freedom
	Parallel Tempering
	Volume Move
	Reactive Canonical Monte Carlo

	Analysis
	Density
	Structure
	Charge Properties
	Reaction Coordinate
	System Sanity
	System Energy
	Virtual Volume Move
	Widom Insertion
	Positions and Trajectories

