
Faunus

May 19, 2022





Contents

1 Introduction 1
1.1 About . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Quick Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Getting Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Installing 3
2.1 Conda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Build from source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Development 7
3.1 Code Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Creating a conda package (development usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Running Simulations 9
4.1 Input and Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Restarting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.4 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.5 Python Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Topology 13
5.1 Global Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Atom Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.3 Molecule Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.4 Initial Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.5 Equilibrium Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Energy 19
6.1 Infinite and NaN Energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2 External Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.3 Nonbonded Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.4 Parallel summation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.5 Electrostatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.6 Pair Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.7 Custom External Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.8 Bonded Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

i



6.9 Geometrical Confinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.10 Solvent Accessible Surface Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.11 Penalty Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.12 Constraining the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7 Monte Carlo Moves 31
7.1 Translation and Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.2 Internal Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.3 Parallel Tempering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.4 Volume Move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.5 Reactive Canonical Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.6 Replay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8 Langevin Dynamics 37

9 Analysis 39
9.1 Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.3 Charge Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.4 Reaction Coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.5 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.6 Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.7 Positions and Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

ii



CHAPTER 1

Introduction

1.1 About

Faunus is a general Monte Carlo simulation code, designed to be flexible, easy to use, and to modify. The code is
written in C++ and Python bindings are available. The development is a team effort with, in reverse chronological
order, many valiant contributions from:

Jakub Smutek, Marco Polimeni, Vidar Aspelin, Stefan Hervø-Hansen, Richard Chudoba, Niels Kouwenhoven, Coralie
Pasquier, Lukáš Sukeník, Giulio Tesei, Alexei Abrikossov, João Henriques, Björn Stenqvist, Axel Thuresson, Robert
Vácha, Magnus Ullner, Chris Evers, Anıl Kurut, Fernando Luís Barroso da Silva, André Teixeira, Christophe Labbez,
Ondrej Marsalek, Martin Trulsson, Björn Persson, Mikael Lund

Should you find Faunus useful, please consider supporting us by crediting:

• Stenqvist et al. Molecular Simulation 2013, 39:1233 [citing articles].

• Lund, M. et al. Source Code Biol. Med., 2008, 3:1 [citing articles].

1.2 Quick Start

Simulations are set up using YAML or JSON files, see for example minimal.yml, for a Metropolis Monte Carlo
simulation of charged Lennard-Jones particles. Running with

yason.py minimal.yml | faunus

produces an output file, out.json, with move statistics, system properties etc. The script yason.py merely
converts from YAML to JSON as the former, easier to read, is used in all examples. For more examples, see the
examples folder.
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1.3 Getting Help

To open the user-guide in a browser, type:

faunus-manual

If you have questions, comments, or need help, create a ticket on our Github issue page.

2 Chapter 1. Introduction
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CHAPTER 2

Installing

2.1 Conda

For macOS and Linux, precompiled binary packages are available via (mini)conda:

conda config --add channels conda-forge
conda install faunus

In addition to the faunus executable, this installs a set of examples in share/faunus, as well as python bindings.
To update an existing installation, use

faunus --version # show version string
conda search faunus # show (new) revisions
conda upgrade faunus

Starting from version 2.1, we adhere to semantic versioning. Note: Updating to a newer version is often delayed, and
if the version you’re after is not on Conda, consider an alternative method below.

2.2 Docker

We provide a Dockerfile that builds the main branch in a Jupyter environment:

curl -s https://raw.githubusercontent.com/mlund/faunus/master/scripts/Dockerfile |
→˓docker build -t faunuslab -
docker run -it -p 8888:8888 faunuslab # open generated url in a browser

Once running, you may alias the Docker-side faunus command:

alias faunus='docker exec --interactive -u 1000 faunuslab faunus'
faunus < input.json # piping input to docker

3
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2.3 Build from source code

Faunus is continuously tested on macOS/Linux, but compile on most unix operating systems, including the Windows
Subsystem for Linus (WSL).

2.3.1 Requirements

• CMake 3.16+

• C++20 compiler (clang, g++, intel ixpc, . . . )

• Python 3.6+ with the following packages:

– jinja2, ruamel_yaml or yaml

The following are optional:

• jsonschema (for validating input - highly recommended)

• pandoc (for building manual)

• pypandoc (for building manual)

• BeautifulSoup4 (for building manual)

• Message Passing Interface (MPI)

2.3.2 Compiling

Download the latest release or the developer branch and build using cmake:

cd faunus
cmake . [OPTIONS]
make faunus
make usagetips # requires `pandoc`, `pypandoc`, `BeautifulSoup4`

Use make help to see all build targets.

The following options are available:

2.3.3 Compiling the Manual

Pandoc is required to build the HTML manual:

make manual_html

In addition to pandoc, a TeX Live installation containing XeLaTeX is required to build the PDF manual. The manual
is supposed to be typeset with EB Garamond, Garamond Math and Fira Code fonts thus they have to be available in
your system. Alternatively, you can tweak the font options in the header.md file.

make manual
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2.3.4 Selecting compilers and python

Should there be multiple compilers or python distributions, be specific:

export CC=/opt/bin/clang
export CXX=/opt/bin/clang++
cmake -DPython_EXECUTABLE=/opt/bin/python3 .

For solving rare python issues on macOS, the linked python library can be probed and, if needed, renamed:

otool -L pyfaunus.so
install_name_tool -change libpython3.8.dylib \
$HOME/miniconda/lib/libpython3.8.dylib pyfaunus.so

For further help with compiling with python bindings, see here.

2.3.5 Resetting the build system

To change the compiler or for another reason reset the build system, do:

make clean
rm -fR CMakeCache.txt CMakeFiles _deps

2.3.6 Intel Threading Building Blocks

If ENABLE_TBB=on, TBB may be used for threaded simulations which may or may not be advantageous, depending
on the system. By default, an unspecified and possibly outdated version of TBB will be downloaded and build.
Alternatively you can use an existing installation via TBB_DIR:

cmake -DENABLE_TBB=on -DTBB_DIR={tbb-root}/lib/cmake/TBB

where {tbb-root} is the installation directory of TBB, e.g. /usr/local.

2.3. Build from source code 5
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CHAPTER 3

Development

The development of Faunus is done mainly in Jetbrain’s CLion (free academic license) but any other IDE or merely
a text editor can be used. We recommend to use tools that respect the provided .clang-format which will ease
merging changes into the codebase, see below.

3.1 Code Style

If you plan to contribute to Faunus it is recommended to activate the pre-commit hook for automatic styling of all
changes:

cd faunus
./scripts/git-pre-commit-format install

This requires clang-format which may also be directly used in IDEs such as CLion. In the top-level directory of
Faunus you will find the style configuration file .clang-format

Also, adhere to the following naming conventions:

3.2 Creating a conda package (development usage)

The basic steps for creating a conda package is outlined below, albeit details depend on the build environment. See
also the .travis.yml configuration file in the main repository.

conda config --add channels conda-forge
conda install conda-build anaconda-client
cd scripts/
conda-build .
anaconda login
anaconda upload -u USER ... # see output from build step

Instead of uploading to anaconda.org, install a local copy directly after the build step above:

7
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conda install -c USER faunus --use-local

8 Chapter 3. Development



CHAPTER 4

Running Simulations

The main program for running simulations is faunus and should be available from the command line after installa-
tion. For general usage, type:

faunus --help

Input is read either from stdin or from a JSON formatted file. Some examples:

faunus < input.json # input from stdin
faunus -i in.json -o out.json -q # file input/output and be quiet

Via the script yason.py, see below, YAML formatted input can be passed:

yason.py in.yml | faunus # from yaml

4.1 Input and Output

Natively, input and output are JSON formatted:

{ "atomlist": [
{ "Na+": { "q": 1.0, "mw": 22.99 } }

]
}

However, via the helper script yason.py, JSON can be converted to/from YAML which is less verbose, more
readable and therefore used throughout the documentation:

atomlist:
- Na+: { q: 1.0, mw: 22.99 }

Generating several input files for a parameter scan, it can be helpful to use an input template file,

9
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# template.yml
geometry: {type: cylinder, length: {{length}}, radius: {{radius}}}

which can be populated using python:

from jinja2 import Template
with open('template.yml') as f:

output = Template(f.read()).render(
length = 200,
radius = 50 )

print(output)

4.1.1 Post-Processing

JSON formatted output can conveniently be converted to syntax highlighted YAML for better readability:

yason.py --color out.json

For further processing of output or input, JSON (and YAML) can be read by most programming languages. For
example in python:

import json
with open('out.json') as f:

d = json.load(f) # --> dict
print( d['atomlist'][0]["Na+"]["mw"] ) # --> 22.99
# ^ ^ ^ ^
# | | | |
# | | | get mol. weight value
# | | key is the atom name
# | fist object in array
# atomlist is an array of objects

4.2 Restarting

Restart files generated by the analysis function savestate contains the last system state (positions, groups etc.). To
start from the previously saved state, use:

faunus --input in.json --state state.json

4.3 Diagnostics

Faunus writes various status and diagnostic messages to the standard error output. The amount of messages can be
control with the --verbosity (-v) option ranging from completely suppressed messages to tracing all operations.
Only warnings and errors are shown by default. It may be useful to increase the verbosity level when debugging to
show status and debug information.

faunus --verbosity 5 --input in.json

Note this is an experimental feature, covering only a fraction of actions so far.

Tip: Redirect the standard error output to a log file.
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faunus -v 5 -i in.json 2>> error.log

4.4 Parallelization

By default, Monte Carlo moves and energy evaluations run in serial and are not sped up by OpenMP/MPI as described
below. Pragmas for non-bonded interactions can relatively easily be added, but this currently requires source modifi-
cations. We are working to make this user-controllable and in the meantime consider using an embarrassingly parallel
scheme via different random seeds (provided that your system equilibrates quickly).

4.4.1 OpenMP

Some routines in Faunus can run in parallel using multiple threads. The only prerequisite is that Faunus was compiled
with OpenMP support (which is default). The number of threads is controlled with an environment variable. The
following example demonstrates how to run Faunus using 4 threads:

export OMP_NUM_THREADS=4
faunus -i in.json

4.4.2 Message Passing Interface (MPI)

Only few routines in Faunus are currently parallelisable using MPI, for example parallel tempering, and penalty
function energies.

Running with MPI spawns nproc processes that may or may not communicate with each other. If nproc>1, input
and output files are prefixed with mpi{rank}. where {rank} is the rank or process number, starting from zero.

The following starts two processes, reading input from mpi0.in.json and mpi1.in.json. All output files,
including those from any analysis are prefixed with mpi0. and mpi1..

mpirun -np 2 ./faunus -i in.json

If all processes take the same input:

mpirun -np 2 ./faunus --nopfx --input in.json
mpirun -np 2 --stdin all ./faunus < in.json

4.5 Python Interface

An increasing part of the C++ API is exposed to Python. For instance:

import pyfaunus
help(pyfaunus)

For more examples, see pythontest.py. Note that the interface is under development and subject to change.

4.4. Parallelization 11
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CHAPTER 5

Topology

The topology describes atomic and molecular properties as well as processes and reactions.

5.1 Global Properties

The following keywords control temperature, simulation box size etc., and must be placed outer-most in the input file.

temperature: 298.15 # system temperature (K)
geometry:

type: cuboid # Cuboidal simulation container
length: [40,40,40] # cuboid dimensions (array or number)

mcloop: # number of MC steps (macro × micro)
macro: 5 # Number of outer MC steps
micro: 100 # Number of inner MC steps; total = 5 × 100 = 500

random: # seed for pseudo random number generator
seed: fixed # "fixed" (default) or "hardware" (non-deterministic)

5.1.1 Geometry

Below is a list of possible geometries, specified by type, for the simulation container, indicating if and in which
directions periodic boundary conditions (PBC) are applied. Origin ($0,0,0$) is always placed in the geometric center
of the simulation container. Particles are always kept inside the simulation container with an external potential that is
zero if inside; infinity if outside.

5.1.2 Simulation Steps

The variables macro and micro are positive integers and their product defines the total number simulations steps.
In each step a random Monte Carlo move is drawn from a weighted distribution. For each macro step, all analysis
methods are, if befitting, instructed to flush buffered data to disk and may also trigger terminal output. For this reason
macro is typically set lower than micro.

13



Faunus

5.2 Atom Properties

Atoms are the smallest possible particle entities with properties defined below.

A filename (.json) may be given instead of an atom definition to load from an external atom list. Atoms are loaded
in the given order, and if it occurs more than once, the latest entry is used.

Example:

atomlist:
- Na: {q: 1.0, sigma: 4, eps: 0.05, dp: 0.4}
- Ow: {q: -0.8476, eps: 0.65, sigma: 3.165, mw: 16}
- my-external-atomlist.json
- ...

5.2.1 Anisotropic particles (experimental)

Faunus supports anisotropic particles such as dipoles, spherocylinders, and quadrupoles. While the implementation is
pretty stable, it is not well optimized and should be considered experimental.

Patchy Sphero-cylinders

Sphero-cylinders are activated using the psc keyword. Currently only a single pair-potential is readily available,
namely a cosine attraction for patch-patch interactions, mixed with Weeks-Chandler-Andersen for excluded volume.

atomlist:
- mycigar:

psc: {type: capped, length: 40, patch_angle: 80}
eps: 2.4 # used for both wca and the cosine attraction
sigma: 10 # cylinder and cap radius
rc: 11.2 # cosine attraction switch distance
wc: 6.0 # cosine attraction switch width

energy:
- nonbonded:

default:
- coswca-psc: # cosine attraction + WCA pair potential

cos2: {mixing: LB} # used for interactions with patch
wca: {mixing: LB} # used for interactions with cylinder

Possible patch types are none, full and capped signifying no patch (); a patch that runs the full length including
the end caps (); or a capped variant where the patch stops before the caps (). The coswca-psc potential can handle
mixtures of PSCs and spherical particles. When a spherical particle interacts with the PSC, the closest distances to the
patch and excluded volume are used to evaluate the attractive and repulsive energy.

5.3 Molecule Properties

A molecule is a collection of atoms, but need not be associated as real molecules. Two particular modes can be
specified:

1. If atomic=true the atoms in the molecule are unassociated and is typically used to define salt particles or
other non-aggregated species. No structure is required, and the molecular center of mass (COM) is unspecified.

2. If atomic=false the molecule resembles a real molecule and a structure or trajectory is required.
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Properties of molecules and their default values:

Example:

moleculelist:
- salt: {atoms: [Na,Cl], atomic: true}
- water:

structure: water.xyz
bondlist:
- harmonic: {index: [0,1], k: 100, req: 1.5}
- ...

- carbon_dioxide:
structure:
- O: [-1.162,0,0]
- C: [0,0,0]
- O: [1.162,0,0]

bondlist:
- harmonic: {index: [1,0], k: 8443, req: 1.162}
- harmonic: {index: [1,2], k: 8443, req: 1.162}
- harmonic_torsion: {index: [0,1,2], k: 451.9, aeq: 180}

excluded_neighbours: 2 # generates an exclusionlist as shown below
exclusionlist: [ [0,1], [1,2], [0,2] ] # redundant in this topology

- ...

5.3.1 Structure Loading Policies

When giving structures using the structure keyword, the following policies apply:

• structure can be a file name: file.@ where @=xyz|pqr|aam|gro

• structure can be an array of atom names and their positions: - Mg: [2.0,0.1,2.0]

• structure can be a FASTA sequence: {fasta: AAAAAAAK, k: 2.0; req: 7.0} which gen-
erates a linear chain of harmonically connected atoms. FASTA letters are translated into three letter residue
names which must be defined in atomlist. Special letters: n=NTR, c=CTR, a=ANK. Instead of a sequence,
fasta may be a filename from which the first sequence is extracted. The filename must end with .fasta.

• Radii in files are ignored; atomlist definitions are used. A warning is issued if radii/charges differ in files
and atomlist.

• By default, charges in files are used; atomlist definitions are ignored. Use keepcharges=False to
override.

• If the structure file contains box size information, this will be ignored.

5.3.2 Nonbonded Interaction Exclusion

Some nonbonded interactions between atoms within a molecule may be excluded in the topology. Force fields almost
always exclude nonbonded interactions between directly bonded atoms. However other nonbonded interactions may
be excluded as well; refer to your force field parametrization. If a molecule contains overlapping hard spheres, e.g., if
the bond length is shorter than the spheres diameter, it is necessary to exclude corresponding nonbonded interactions
to avoid infinite energies.

The excluded nonbonded interactions can be given as an explicit list of atom pairs excludelist, or they can be
deduced from the molecules topology using the excluded_neighbours=n option: If the atoms are n or less
bonds apart from each other in the molecule, the nonbonded interactions between them are excluded. Both options
excluded_neighbours and exclusionlist can be used together making a union.

5.3. Molecule Properties 15
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5.4 Initial Configuration

Upon starting a simulation, an initial configuration is required and must be specified in the section
insertmolecules as a list of valid molecule names. Molecules are inserted in the given order and may be
inactive, meaning that they are not present in the simulation cell, but available as a reservoir for e.g. grand
canonical moves. If a group is marked atomic, its atoms are inserted N times.

Example:

insertmolecules:
- salt: { molarity: 0.1 }
- water: { N: 256, inactive: 2 }

The following keywords for each molecule type are available:

A filename with positions for the N molecules can be given with positions. The file must contain exactly N-times
molecular positions that must all fit within the simulation box. Only positions from the file are copied; all other
information is ignored.

For implicit molecules, only N should be given and the molecules are never inserted into the simulation box.

The molarity keyword is an alternative to N and uses the initial volume to calculate the number of molecules to
insert. N and molarity are mutually exclusive.

5.4.1 Overlap Check

Random insertion is repeated until there is no overlap with the simulation container boundaries. Overlap between
particles is ignored and for i.e. hard-sphere potentials the initial energy may be infinite.

5.5 Equilibrium Reactions

Faunus supports density fluctuations, coupled to chemical equilibria with explicit and/or implicit particles via their
chemical potentials as defined in the reactionlist detailed below, as well as in atomlist and moleculelist.
The level of flexibility is high and reactions can be freely composed.

The move involves deletion and insertion of reactants and products and it is therefore important that simulations are
started with a sufficiently high number of initial molecules in insertmolecules. If not, the rcmc move will
attempt to issue warnings with suggestions how to fix it.

5.5.1 Reaction format

The initial key describes a transformation of reactants (left of =) into products (right of =) that may be a mix of atomic
and molecular species.

• all species, +, and = must be surrounded by white-space

• atom and molecule names cannot overlap

• species can be repeated to match the desired stoichiometry, e.g. A + A = C

Available keywords:

The neutral keyword is needed for molecular groups containing titratable atoms. If neutral is set to true, the
activity of the neutral molecule should be specified in moleculelist.

16 Chapter 5. Topology



Faunus

5.5.2 Example: Grand Canonical Salt Particles

This illustrates how to maintain constant chemical potential of salt ions:

atomlist:
- na: {q: 1.0, ...} # note that atom names must differ
- cl: {q: -1.0, ...} # from molecule names

moleculelist:
- Na+: {atoms: [na], atomic: true, activity: 0.1}
- Cl-: {atoms: [cl], atomic: true, activity: 0.1}

reactionlist:
- "= Na+ + Cl+": {} # note: molecules, not atoms

moves:
- rcmc: {} # activate speciation move

The same setup can be used also for molecular molecules, i.e. molecules with atomic: false.

5.5.3 Example: Acid-base titration with implicit protons

An implicit atomic reactant or product is included in the reaction but not explicitly in the simulation cell. Common
use-cases are acid-base equilibria where the proton concentration is often very low:

atomlist:
- H+: {implicit: true, activity: 0.00001} # pH 5
- COO-: {q: -1.0, ...}
- COOH: {q: 0.0, ...}

reactionlist:
- "COOH = COO- + H+": {pK: 4.8} # not electroneutral!

where we set pK equal to the pKa: $$ K_a = \frac{ a_{\mathrm{COO^-}} a_{\mathrm{H^+}} }{
a_{\mathrm{COOH}} }. $$ To simulate at a given constant pH, H+ is specified as an implicit atom of activity $10^{-
\mathrm{pH}}$ and the equilibrium is modified accordingly (in this case $K$ is divided by $a_{\mathrm{H^+}}$).
It is important to note that this reaction violates electroneutrality and should be used only with Hamiltonians where
this is allowed. This could for example be in systems with salt screened Yukawa interactions.

5.5.4 Example: Acid-base titration coupled with Grand Canonical Salt

To respect electroneutrality when swapping species, we can associate the titration move with an artificial insertion or
deletion of salt ions. These ions should be present under constant chemical potential and we therefore couple to a
grand canonical salt bath:

atomlist:
- H+: {implicit: true, activity: 0.00001} # pH 5
- COO-: {q: -1.0, ...}
- COOH: {q: 0.0, ...}
- na: {q: 1.0, ...}
- cl: {q: -1.0, ...}

moleculelist:
- Na+: {atoms: [na], atomic: true, activity: 0.1}
- Cl-: {atoms: [cl], atomic: true, activity: 0.1}

reactionlist:
- "COOH + Cl- = COO- + H+": {pK: 4.8} # electroneutral!
- "COOH = Na+ + COO- + H+": {pK: 4.8} # electroneutral!
- "= Na+ + Cl-": {} # grand canonical salt
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For the first reaction, $K$ is divided by both $a_{\mathrm{H^+}}$ and $a_{\mathrm{Cl^-}}$, so that the final equi-
librium constant used by the speciation move is $$ K’ = \frac{K_a}{a_{ \mathrm{H^+} } a_{ \mathrm{Cl^-} } }
= \frac{ a_{\mathrm{COO^-}} }{ a_{\mathrm{COOH}} a_{\mathrm{Cl^-}} }. $$ In an ideal system, the involve-
ment of Na or Cl in the acid-base reaction is inconsequential for the equilibrium, since the Grand Canonical ensemble
ensures constant salt activity.

5.5.5 Example: Precipitation of Calcium Hydroxide using implicit molecules

Here we introduce a solid phase of Ca(OH)2 and its solubility product to predict the amount of dissolved calcium
and hydroxide ions. Note that we start from an empty simulation box (both ions are inactive) and the solid phase is
treated implicitly, i.e. it never inters the simulation box. If a forward reaction is made, one implicit molecule (out 200
in total) will be converted into explicit molecules. Once all 200 have been consumed, only backward reactions are
possible. Additional, coupled reactions can be introduced to study complex equilibrium systems under influence of
intermolecular interactions.

moleculelist:
- Ca(OH)2: {implicit: true} # this molecule is implicit
- Ca++: {atoms: [ca++], atomic: true}
- OH-: {atoms: [oh-], atomic: true}

insertmolecules:
- Ca++: {N: 200, inactive: true}
- OH-: {N: 400, inactive: true}
- Ca(OH)2: {N: 200} # not actually inserted!

reactionlist:
- "Ca(OH)2 = Ca++ + OH- + OH-": {pK: 5.19}

5.5.6 Example: Swapping between molecular conformations

The following can be used to alternate between different molecular conformations. When swapping, the mass center
position and orientation are randomly generated.

moleculelist:
- A: {structure: "conformationA.xyz", ...}
- B: {structure: "conformationB.xyz", ...}

reactionlist:
- "A = B": {lnK: 0.69} # K=2, "B" twice as likely as "A"

5.5.7 Internal degrees of freedom (experimental)

If a fluctuating molecule has internal degreees of freedom, the internal bond energy is included as a bias so that the
internal state does not affect the acceptance. To disable this behavior, a minor code modification is currently required
(see MolecularGroupDeActivator::apply_bond_bias).
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CHAPTER 6

Energy

The system energy, or Hamiltonian, consists of a sum of potential energy terms,

$$ \mathcal{H}_{sys} = U_1 + U_2 + . . . $$

The energy terms are specified in energy at the top level input and evaluated in the order given. For example:

energy:
- isobaric: {P/atm: 1}
- sasa: {molarity: 0.2, radius: 1.4 }
- confine: {type: sphere, radius: 10, molecules: [water]}
- nonbonded:

default: # applied to all atoms
- lennardjones: {mixing: LB}
- coulomb: {type: plain, epsr: 1}
Na CH: # overwrite specific atom pairs
- wca: { mixing: LB }

- maxenergy: 100
- ...

The keyword maxenergy can be used to skip further energy evaluation if a term returns a large energy change (in
kT), which will likely lead to rejection. The default value is infinity.

Energies in MC may contain implicit degrees of freedom, i.e. be temperature-dependent, effective potentials. This is
inconsequential for sampling density of states, but care should be taken when interpreting derived functions such as
energies, entropies, pressure etc.

6.1 Infinite and NaN Energies

In case one or more potential energy terms of the system Hamiltonian returns infinite or NaN energies, a set of
conditions exists to evaluate the acceptance of the proposed move:

• always reject if new energy is NaN (i.e. division by zero)
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• always accept if energy change is from NaN to finite energy

• always accept if the energy difference is NaN (i.e. from infinity to minus infinity)

These conditions should be carefully considered if equilibrating a system far from equilibrium.

6.2 External Pressure

This adds the following pressure term (see i.e. Frenkel and Smith, Chapter 5.4) to the Hamiltonian, appropriate for
MC moves in $\ln V$:

$$ U = PV - k_BT\left ( N + 1 \right ) \ln V $$

where $N$ is the total number of molecules and atomic species.

6.3 Nonbonded Interactions

This term loops over pairs of atoms, $i$, and $j$, summing a given pair-wise additive potential, $u_{ij}$,

$$ U = \sum_{i=0}^{N-1}\sum_{j=i+1}^N u_{ij}(\textbf{r}_j-\textbf{r}_i)$$

The most general method is nonbondedwhere potentials can be arbitrarily mixed and customized for specific particle
combinations.

Example:

- nonbonded:
default: # default pair potential

- lennardjones: {mixing: LB}
- coulomb: {type: fanourgakis, epsr: 1.0, cutoff: 12}

Ow Ca: # custom potential for atom type "Ow" and atom type "Ca"
- wca: {mixing: LB}

Below is a description of possible nonbonded methods. For simple potentials, the hard coded variants are often the
fastest option. For better performance, it is recommended to use nonbonded_splined in place of the more robust
nonbonded method.

6.3.1 Mass Center Cutoffs

For cutoff based pair-potentials working between large molecules, it can be efficient to use mass center cutoffs between
molecular groups, thus skipping all pair-interactions. A single cutoff can be used between all molecules (default),
or specified for specific combinations:

- nonbonded:
cutoff_g2g:

default: 40.0
protein polymer: 20.0

If default is omitted, only the specified pairs are subject to the cutoffs. Finally, cutoff_g2g: 40.0 is allowed
for a uniform cutoff between all groups.
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6.3.2 Spline Options

The nonbonded_splined method internally splines the potential in an automatically determined interval
[rmin,rmax] determined by the following policies:

• rmin is decreased towards zero until the potential reaches u_at_rmin.

• rmax is increased until the potential reaches u_at_rmax.

If above the interval, zero is returned. If below the interval, the exact energy (or infinity) is returned. For details about
the splines for each pair, use to_disk and/or maximize the verbosity level (--verbosity) when running faunus.

Note: Anisotropic pair-potentials cannot be splined. This also applies to non-shifted electrostatic potentials such as
plain and un-shifted yukawa.

6.4 Parallel summation

Depending on how Faunus was compiled, parallel, nonbonded summation schemes may be available. Activate with:

- nonbonded:
summation_policy: parallel
...

where parallel uses C++ internal threading; openmp uses OpenMP; and serial skip parallel summation (de-
fault). A warning will be issued if the desired scheme is unavailable. For the openmp policy, you may control the
number of threads with the environmental variable OMP_NUM_THREADS. Summation policies other than serial
may require substantial memory for systems with many particles.

6.5 Electrostatics

This is a multipurpose potential that handles several electrostatic methods. Beyond a spherical real-space cutoff,
$R_c$, the potential is zero while if below,

$$ \tilde{u}^{(zz)}_{ij}(\bar{r}) = \frac{e^2 z_i z_j }{ 4\pi\epsilon_0\epsilon_r |\bar{r}| }\mathcal{S}(q) $$

where $\bar{r} = \bar{r}_j - \bar{r}_i$, and tilde indicate that a short-range function $\mathcal{S}(q=|\bar{r}|/R_c)$
is used to trucate the interactions. The available short-range functions are:

Internally $\mathcal{S}(q)$ is splined whereby all types evaluate at similar speed. For the poisson potential,

$$ \acute{q} = \frac{1-\exp\left(2\kappa R_c q\right)}{1-\exp\left(2\kappa R_c\right)} $$

which as the inverse Debye length, $\kappa\to 0$ gives $\acute{q}=q$. The poisson scheme can generate a number
of other truncated pair-potentials found in the litterature, depending on C and D. Thus, for an infinite Debye length,
the following holds:

6.5.1 Debye Screening Length

A background screening due to implicit ions can be added by specifying the keyword debyelength to the schemes

• yukawa

• ewald

• poisson
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The yukawa scheme has simple exponential screening and, like plain, an infinite cutoff. If shift: true is
passed to the yukawa scheme, the potential is shifted to give zero potential and force at the now finite cutoff distance
(simply an alias for poisson with C=1 and D=1). The list below shows alternative ways to specify the background
electrolyte, and will automatically deduce the salt stoichiometry based on valencies:

debyelength: 30.0, epsr: 79.8 # assuming 1:1 salt, e.g. NaCl
molarity: 0.02 # 0.02 M 1:1 salt, e.g. NaCl
molarity: 0.01, valencies: [2,3,-2] # 0.01 M Ca2Al2(SO4)5

6.5.2 Multipoles

If the type coulomb is replaced with multipole then the electrostatic energy will in addition to monopole-
monopole interactions include contributions from monopole-dipole, and dipole-dipole interactions. Multipolar prop-
erties of each particle is specified in the Topology. The zahn and fennell approaches have undefined dipolar
self-energies and are therefore not recommended for such systems.

The ion-dipole interaction is described by

$$ \tilde{u}^{(z\mu)}_{ij}(\bar{r}) = -\frac{ez_i\left(\mu_j\cdot \hat{r}\right) }{|\bar{r}|^2} \left( \mathcal{S}(q) -
q\mathcal{S}^{\prime}(q) \right) $$

where $\hat{r} = \bar{r}/|\bar{r}|$, and the dipole-dipole interaction by

$$ \tilde{u}^{\mu\mu}_{ij}(\bar{r}) = -\left ( \frac{3 ( \boldsymbol{\mu}_i \cdot \hat{r} )
\left(\boldsymbol{\mu}_j\cdot\hat{r}\right) - \boldsymbol{\mu}_i\cdot\boldsymbol{\mu}_j }{|\bar{r}|^3}\right)
\left( \mathcal{S}(q) - q\mathcal{S}^{\prime}(q) + \frac{q^2}{3}\mathcal{S}^{\prime\prime}(q) \right) -
\frac{\left(\boldsymbol{\mu}_i\cdot\boldsymbol{\mu}_j\right)}{|\bar{r}|^3}\frac{q^2}{3}\mathcal{S}^{\prime\prime}(q).
$$

Warning:

• The zahn and fennell approaches have undefined dipolar self-energies (see next section) and are therefore
not recommended for dipolar systems.

6.5.3 Self-energies

When using coulomb or multipole, an electrostatic self-energy term is automatically added to the Hamiltonian.
The monopole and dipole contributions are evaluated according to

$$ U_{self} = -\frac{1}{2}\sum_i^N\sum_{\ast\in{z,\mu}} \lim_{|\bar{r}_{ii}|\to 0}\left(
u^{(\ast\ast)}_{ii}(\bar{r}_{ii})

• \tilde{u}^{(\ast\ast)}_{ii}(\bar{r}_{ii}) \right ) $$

where no tilde indicates that $\mathcal{S}(q)\equiv 1$ for any $q$.

6.5.4 Ewald Summation

If type is ewald, terms from reciprocal space and surface energies are automatically added (in addition to the previ-
ously mentioned self- and real space-energy) to the Hamiltonian which activates the additional keywords:

The added energy terms are:

$$ U_{\text{reciprocal}} = \frac{2\pi f}{V} \sum_{ {\bf k} \ne {\bf 0}} A_k \vert Q^{q\mu} \vert^2 $$
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$$ U_{\text{surface}} = \frac{1}{4\pi\varepsilon_0\varepsilon_r}\frac{ 2\pi }{ (2\varepsilon_{surf} + 1) V } \left(
\left|\sum_{j}q_j\bar{r}_j\right|^2 + 2 \sum_j q_i \bar{r}_j \cdot \sum_j \boldsymbol{\mu}_j + \left| \sum_j \boldsym-
bol{\mu}_j \right|^2 \right ) $$

where

$$ f = \frac{1}{4\pi\varepsilon_0\varepsilon_r} \quad\quad V=L_xL_yL_z $$

$$ A_k = \frac{e^{-( k^2 + \kappa^2 )/4\alpha^2}}{k^2} \quad \quad Q^{q\mu} = Q^{q} + Q^{\mu} $$

$$ Q^{q} = \sum_{j}q_je^{i({\bf k}\cdot {\bf r}_j)} \quad Q^{\mu} = \sum_{j}i({\boldsymbol{\mu}}_j\cdot {\bf
k}) e^{i({\bf k}\cdot {\bf r}_j)} $$

$$ \bar{k} = 2\pi\left( \frac{n_x}{L_x} , \frac{n_y}{L_y} ,\frac{n_z}{L_z} \right)\quad \bar{n} \in \mathbb{Z}^3
$$

Like many other electrostatic methods, the Ewald scheme also adds a self-energy term as described above. In the case
of isotropic periodic boundaries (ipbc=true), the orientational degeneracy of the periodic unit cell is exploited to
mimic an isotropic environment, reducing the number of wave-vectors to one fourth compared with 3D PBC Ewald.
For point charges, IPBC introduce the modification,

$$ Q^q = \sum_j q_j \prod_{\alpha\in{x,y,z}} \cos \left( \frac{2\pi}{L_{\alpha}} n_{\alpha} r_{\alpha,j} \right) $$

while for point dipoles (currently unavailable),

$$ Q^{\mu} = \sum_j \bar{\mu}_j \cdot \nabla_j \left( \prod_{ \alpha \in { x,y,z } } \cos \left ( \frac{2\pi}{L_{\alpha}}
n_{\alpha} \bar{r}_{\alpha,j} \right ) \right ) $$

6.5.5 Mean-Field Correction

For cuboidal slit geometries, a correcting mean-field, external potential, $\varphi(z)$, from charges outside the box
can be iteratively generated by averaging the charge density, $\rho(z)$, in $dz$-thick slices along $z$. This correction
assumes that all charges interact with a plain Coulomb potential and that a cubic cutoff is used via the minimum image
convention.

To enable the correction, use the akesson keyword at the top level of energy:

The density is updated every nstep energy calls, while the external potential can be updated slower (nphi) since it
affects the ensemble. A reasonable value of nstep is system dependent and can be a rather large value. Updating the
external potential on the fly leads to energy drifts that decrease for consecutive runs. Production runs should always
be performed with fixed=true and a well converged $\rho(z)$.

At the end of simulation, file is overwritten unless fixed=true.

6.6 Pair Potentials

In addition to the Coulombic pair-potentials described above, a number of other pair-potentials can be used. Through
the C++ API or the custom potential explained below, it is easy to add new potentials.

6.6.1 Charge-Nonpolar

The energy when the field from a point charge, $z_i$, induces a dipole in a polarizable particle of unit-less excess
polarizability, $\alpha_j=\left ( \frac{\epsilon_j-\epsilon_r}{\epsilon_j+2\epsilon_r}\right ) a_j^3$, is

$$ \beta u_{ij} = -\frac{\lambda_B z_i^2 \alpha_j}{2r_{ij}^4} $$
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where $a_j$ is the radius of the non-polar particle and $\alpha_j$ is set in the atom topology, alphax. For non-
polar particles in a polar medium, $\alpha_i$ is a negative number. For more information, see J. Israelachvili’s book,
Chapter 5.

Charge-polarizability products for each pair of species is evaluated once during construction and based on the defined
atom types.

6.6.2 Cosine Attraction

An attractive potential used for coarse grained lipids and with the form,

$$ \beta u(r) = -\epsilon \cos^2 \left ( \frac{\pi(r-r_c)}{2w_c} \right ) $$

for $r_c\leq r \leq r_c+w_c$. For $r<r_c$, $\beta u=-\epsilon$, while zero for $r>r_c+w_c$.

6.6.3 Assorted Short Ranged Potentials

The potentials below are often used to keep particles apart and/or to introduce stickiness. The atomic interaction
parameters, e.g., $\sigma_i$ and $\epsilon_i$, are taken from the topology.

If several potentials are used together and different values for the coefficients are desired, an aliasing of the parameters’
names can be introduced. For example by specifying sigma: sigma_hs, the potential uses the atomic value
sigma_hs instead of sigma, as shown in example below. To avoid possible conflicts of parameters’ names with
future keywords of Faunus, we recommend following naming scheme: property_pot, where property is either
sigma or eps and pot stands for the potential abbreviation, i.e, hs, hz, lj, sw, and wca.

Mixing (combination) rules can be specified to automatically parametrize heterogeneous interactions. If not described
otherwise, the same rule is applied to all atomic parameters used by the potential. No meaningful defaults are defined
yet, hence always specify the mixing rule explicitly, e.g., arithmetic for hardsphere.

For convenience, the abbreviation LB can be used instead of lorentz_berthelot.

Custom parameter values can be specified to override the mixing rule for a given pair, as shown in the example bellow.

- lennardjones:
mixing: LB
custom:

- Na Cl: {eps: 0.2, sigma: 2}
- K Cl: { ... }

- hertz:
mixing: LB
eps: eps_hz
custom:

- Na Cl: {eps_hz: 0.2, sigma: 2}
- hardsphere:

mixing: arithmetic
sigma: sigma_hs
custom:

- Na Cl: {sigma_hs: 2}

6.6.4 SASA (pair potential)

This calculates the surface area of two intersecting particles or radii $R$ and $r$ to estimate an energy based on
transfer-free-energies (TFE) and surface tension. The total surface area is calculated as

$$ A = 4\pi \left ( R^2 + r^2 \right ) - 2\pi \left ( Rh_1 + rh_2 \right ) $$
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where $h_1$ and $h_2$ are the heights of the spherical caps comprising the lens formed by the overlapping spheres.
For complete overlap, or when far apart, the full area of the bigger sphere or the sum of both spheres are returned. The
pair-energy is calculated as:

$$ u_{ij} = A \left ( \gamma_{ij} + c_s \varepsilon_{\text{tfe},ij} \right ) $$

where $\gamma_{ij}$ and $\varepsilon_{\text{tfe},ij}$ are the arithmetic means of tension and tfe provided in
the atomlist.

Note that SASA is strictly not additive and this pair-potential is merely a poor-mans way of approximately taking into
account ion-specificity and hydrophobic/hydrophilic interactions. Faunus offers also a full, albeit yet experimental
implementation of [Solvent Accessible Surface Area] energy.

6.6.5 Custom

This takes a user-defined expression and a list of constants to produce a runtime, custom pair-potential. While perhaps
not as computationally efficient as hard-coded potentials, it is a convenient way to access alien potentials. Used in
combination with nonbonded_splined there is no overhead since all potentials are splined.

The following illustrates how to define a Yukawa potential:

custom:
function: lB * q1 * q2 / r * exp( -r/D ) # in kT
constants:

lB: 7.1 # Bjerrum length
D: 30 # Debye length

The function is passed using the efficient ExprTk library and a rich set of mathematical functions and logic is available.
In addition to user-defined constants, the following symbols are defined:

6.7 Custom External Potential

This applies a custom external potential to atoms or molecular mass centra using the ExprTk library syntax.

In addition to user-defined constants, the following symbols are available:

If com=true, charge refers to the molecular net-charge, and x,y,z the mass-center coordinates. The following
illustrates how to confine molecules in a spherical shell of radius, r, and thickness dr:

customexternal:
molecules: [water]
com: true
constants: {radius: 15, dr: 3}
function: >

var r2 := x^2 + y^2 + z^2;
if ( r2 < radius^2 )

1000 * ( radius-sqrt(r2) )^2;
else if ( r2 > (radius+dr)^2 )

1000 * ( radius+dr-sqrt(r2) )^2;
else

0;
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6.7.1 Gouy Chapman

By setting function=gouychapman, an electric potential from a uniformly, charged plane in a 1:1 salt solution is
added; see e.g. the book Colloidal Domain by Evans and Wennerström, 1999. If a surface potential, $\varphi_0$ is
specified,

$$ \rho = \sqrt{\frac{2 c_0}{\pi \lambda_B} } \sinh ( \beta e \varphi_0 / 2 ) $$ while if instead a surface charge density,
$\rho$, is given, $$ \beta e \varphi_0 = 2\mbox{asinh} \left ( \rho \sqrt{\frac{\pi \lambda_B} {2 c_0}} \right ) $$
where $\lambda_B$ is the Bjerrum length. With $\Gamma_0 = \tanh{ \beta e \varphi_0 / 4 }$ the final, non-linearized
external potential is: $$ \beta e \phi_i = 2 \ln \left ( \frac{1+\Gamma_0e^{-\kappa r_{z,i}}}{1-\Gamma_0 e^{-\kappa
r_{z,i}}} \right ) $$ where $z_i$ is the particle charge; $e$ is the electron unit charge; $\kappa$ is the inverse Debye
length; and $r_{z,i}$ is the distance from the charged $xy$-plane which is always placed at the minimum $z$-value
of the simulation container (normally a slit geometry). Fluctuations of the simulation cell dimensions are respected.

The following parameters should be given under constants; the keywords rho, rhoinv, and phi0 are mutually
exclusive.

6.8 Bonded Interactions

Bonds and angular potentials are added via the keyword bondlist either directly in a molecule definition (topology)
for intra-molecular bonds, or in energy->bonded where the latter can be used to add inter-molecular bonds:

moleculelist:
- water: # TIP3P

structure: "water.xyz"
bondlist: # index relative to molecule

- harmonic: { index: [0,1], k: 5024, req: 0.9572 }
- harmonic: { index: [0,2], k: 5024, req: 0.9572 }
- harmonic_torsion: { index: [1,0,2], k: 628, aeq: 104.52 }

energy:
- bonded:

bondlist: # absolute index; can be between molecules
- harmonic: { index: [56,921], k: 10, req: 15 }

$\mu V T$ ensembles and Widom insertion are currently unsupported for molecules with bonds.

The following shows the possible bonded potential types:

6.8.1 Harmonic

$$ u(r) = \frac{1}{2}k(r-r_{\mathrm{eq}})^2 $$

6.8.2 Finite Extensible Nonlinear Elastic

Finite extensible nonlinear elastic potential long range repulsive potential.

$$ u(r) = \begin{cases} -\frac{1}{2} k r_{\mathrm{max}}^2 \ln \left [ 1-(r/r_{\mathrm{max}})^2 \right ], & \text{if
} r < r_{\mathrm{max}} \ \infty, & \text{if } r \geq r_{\mathrm{max}} \end{cases} $$

It is recommended to only use the potential if the initial configuration is near equilibrium, which prevalently depends on
the value of rmax. Should one insist on conducting simulations far from equilibrium, a large displacement parameter
is recommended to reach finite energies.
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6.8.3 Finite Extensible Nonlinear Elastic + WCA

Finite extensible nonlinear elastic potential long range repulsive potential combined with the short ranged Weeks-
Chandler-Andersen (wca) repulsive potential. This potential is particularly useful in combination with the
nonbonded_cached energy.

$$ u(r) = \begin{cases} -\frac{1}{2} k r_{\mathrm{max}}^2 \ln \left [ 1-(r/r_{\mathrm{max}})^2 \right ] +
u_{\mathrm{wca}}, & \text{if } 0 < r \leq 2^{1/6}\sigma \ -\frac{1}{2} k r_{\mathrm{max}}^2 \ln \left [ 1-
(r/r_{\mathrm{max}})^2 \right ], & \text{if } 2^{1/6}\sigma < r < r_{\mathrm{max}} \ \infty, & \text{if } r \geq
r_{\mathrm{max}} \end{cases} $$

It is recommended to only use this potential if the initial configuration is near equilibrium, which prevalently de-
pends on the value of rmax. Should one insist on conducting simulations far from equilibrium, a large displacement
parameter is recommended to reach finite energies.

6.8.4 Harmonic torsion

$$ u(\alpha) = \frac{1}{2}k(\alpha - \alpha_{\mathrm{eq}})^2 $$ where $\alpha$ is the angle between vector 1→0
and 1→2 (numbers refer to the position in index).

6.8.5 Cosine based torsion (GROMOS-96)

$$ u(\alpha) = \frac{1}{2}k(\cos(\alpha) - \cos(\alpha_{{\mathrm{eq}}}))^2 $$ where $\alpha$ is the angle between
vector 1→0 and 1→2 (numbers refer to the position in index).

6.8.6 Proper periodic dihedral

$$ u(r) = k(1 + \cos(n\phi - \phi_{\mathrm{syn}})) $$ where $\phi$ is the angle between the planes constructed from
the points 0,1,2 and 1,2,3 (numbers refer to the position in index).

6.8.7 Improper harmonic dihedral

$$ u(\phi) = \frac{1}{2}k(\phi - \phi_{\mathrm{eq}})^2 $$ where $\phi$ is the angle between the planes constructed
from the points 0,1,2 and 1,2,3 (numbers refer to the position in index).

6.9 Geometrical Confinement

Confines molecules in a given region of the simulation container by applying a harmonic potential on exterior atom
positions, $\mathbf{r}_i$:

$$ U = \frac{1}{2} k \sum_{i}^{\text{exterior}} f_i $$

where $f_i$ is a function that depends on the confinement type, and $k$ is a spring constant. The latter may be
infinite which renders the exterior region strictly inaccessible. During equilibration it is advised to use a finite spring
constant to drive exterior particles inside the region. Should you insist on equilibrating with $k=\infty$, ensure that
displacement parameters are large enough to transport molecules inside the allowed region, or all moves may be
rejected. Further, some analysis routines have undefined behavior for configurations with infinite energies.

Available values for type and their additional keywords:

The scale option will ensure that the confining radius is scaled whenever the simulation volume is scaled. This could
for example be during a virtual volume move (analysis) or a volume move in the $NPT$ ensemble.
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where $\mathbf{d}=(1,1,0)$ and $\circ$ is the entrywise (Hadamard) product.

where $\delta r$ are distances to the confining, cuboidal faces. Note that the elements of low must be smaller than or
equal to the corresponding elements of high.

6.10 Solvent Accessible Surface Area

Calculates the free energy contribution due to

1. atomic surface tension

2. co-solute concentration (typically electrolytes)

via a SASA calculation for each particle. The energy term is:

$$ U = \sum_i^N A_{\text{sasa},i} \left ( \gamma_i + c_s \varepsilon_{\text{tfe},i} \right ) $$

where $c_s$ is the molar concentration of the co-solute; $\gamma_i$ is the atomic surface tension; and $\varep-
silon_{\text{tfe},i}$ the atomic transfer free energy, both specified in the atom topology with tension and tfe,
respectively. Will use cell lists if a geometry is either cuboid or sphere. The dense option specifies if a dense
implementation (memory heavy but faster) or a sparse one (slightly slower but light) of a cell list container will be
used.

6.10.1 Alternative schemes

6.11 Penalty Function

This is a version of the flat histogram or Wang-Landau sampling method where an automatically generated bias or
penalty function, $f(\mathcal{X}^d)$, is applied to the system along a one dimensional ($d=1$) or two dimensional
($d=2$) reaction coordinate, $\mathcal{X}^d$, so that the configurational integral reads,

$$ Z(\mathcal{X}^d) = e^{-\beta f(\mathcal{X}^d)} \int e^{-\beta \mathcal{H}(\mathcal{R}, \mathcal{X}^d)} d
\mathcal{R}. $$

where $\mathcal{R}$ denotes configurational space at a given $\mathcal{X}$. For every visit to a state along the
coordinate, a small penalty energy, $f_0$, is added to $f(\mathcal{X}^d)$ until $Z$ is equal for all $\mathcal{X}$.
Thus, during simulation the free energy landscape is flattened, while the true free energy is simply the negative of the
generated bias function,

$$ \beta A(\mathcal{X}^d) = -\beta f(\mathcal{X}^d) = -\ln\int e^{-\beta \mathcal{H}(\mathcal{R}, \mathcal{X}^d)}
d \mathcal{R}. $$

Flat histogram methods are often attributed to Wang and Landau (2001) but the idea appears in earlier works, for
example by Hunter and Reinhardt (1995) and Engkvist and Karlström (1996).

To reduce fluctuations, $f_0$ can be periodically reduced (update, scale) as $f$ converges. At the end of simula-
tion, the penalty function is saved to disk as an array ($d=1$) or matrix ($d=2$). Should the penalty function file be
available when starting a new simulation, it is automatically loaded and used as an initial guess. This can also be used
to run simulations with a constant bias by setting $f_0=0$.

Example setup where the $x$ and $y$ positions of atom 0 are penalized to achieve uniform sampling:

energy:
- penalty:

f0: 0.5
scale: 0.9

(continues on next page)
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(continued from previous page)

update: 1000
file: penalty.dat
coords:
- atom: {index: 0, property: "x", range: [-2.0,2.0], resolution: 0.1}
- atom: {index: 0, property: "y", range: [-2.0,2.0], resolution: 0.1}

Options:

The coordinate, $\mathcal{X}$, can be freely composed by one or two of the types listed in the next section (via
coords).

6.11.1 Reaction Coordinates

The following reaction coordinates can be used for penalising the energy and can further be used when analysing
the system (see Analysis). Please notice that atom id’s are determined by the order of appearance in the atomlist
whereas molecular id’s follow the order of insertion specified in insertmolecules.

Atom Properties

Molecule Properties

Notes:

• the molecular dipole moment is defined with respect to the mass-center

• for angle, the principal axis is the eigenvector corresponding to the smallest eigenvalue of the gyration tensor

• Rinner can be used to calculate the inner radius of cylindrical or spherical vesicles. $d^2=\bf{r} \cdot$dir
where $\bf{r}$ is the position vector

• L/R can be used to calculate the bending modulus of a cylindrical lipid vesicle

• Rg is calculated as the square-root of the sum of the eigenvalues of the gyration tensor, $S$. $$ S =
\frac{1}{\sum_{i=1}^{N} m_{i}} \sum_{i=1}^{N} m_{i} \bf{t_i} \bf{t_i^T} $$ where $\bf{t_i} = \bf{r_i} -
\bf{cm}$, $\bf{r_i}$ is the coordinate of the $i$th atom, $m_i$ is the mass of the $i$th atom, $\bf{cm}$ is the
mass center of the group and $N$ is the number of atoms in the molecule.

System Properties

The enclosing cuboid is the smallest cuboid that can contain the geometry. For example, for a cylindrical simulation
container, Lz is the height and Lx=Ly is the diameter.

6.11.2 Multiple Walkers with MPI

If compiled with MPI, the master process collects the bias function from all nodes upon penalty function update.
The average is then re-distributed, offering linear parallelization of the free energy sampling. It is crucial that the
walk in coordinate space differs in the different processes, e.g., by specifying a different random number seed; start
configuration; or displacement parameter. File output and input are prefixed with mpi{rank}.

The following starts all MPI processes with the same input file, and the MPI prefix is automatically appended to all
other input and output:

yason.py input.yml | mpirun --np 6 --stdin all faunus -s state.json
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Here, each process automatically looks for mpi{nproc}.state.json.

6.12 Constraining the system

Reaction coordinates can be used to constrain the system within a range using the constrain energy term. Step-
ping outside the range results in an inifinite energy, forcing rejection. For example,

energy:
- constrain: {type: molecule, index: 0, property: end2end, range: [0,200]}

Tip: placing constrain at the top of the energy list is more efficient as the remaining energy terms are skipped
should an infinite energy arise.
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CHAPTER 7

Monte Carlo Moves

A simulation can have an arbitrary number of MC moves operating on molecules, atoms, the volume, or any other
parameter affecting the system energy. Moves are specified in the moves section at the top level input. For example:

moves:
- moltransrot: { molecule: water, dp: 2.0, repeat: N,

dprot: 1.0, dir: [1,1,0] }
- volume: { dV: 0.01 }
- ...

random: { seed: hardware }

The pseudo-random number engine used for MC moves can be seeded in three ways,

The last option is used to restore the state of the engine as saved along with normal simulation output as a string
containing a lenghty list of numbers. If initialization from a previously saved state fails – this may happen if generated
on another operating system – a warning is issued and the seed falls back to fixed.

7.1 Translation and Rotation

The following moves are for translation and rotation of atoms, molecules, or clusters. The dir keyword restricts
translational directions which by default is set to [1,1,1], meaning translation by a unit vector, randomly picked
on a sphere, and scaled by a random number in the interval [0, dp]. If dir=[1,1,0] the unit vector is instead
picked on a circle (here x, y) and if dir=[0,0,1] on a line (here $z$).

7.1.1 Molecular

This will simultaneously translate and rotate a molecular group by the following operation

$$ \textbf{r}^N_{trial} = \mbox{Rot}(\textbf{r}^N) + \delta $$

where $\mbox{Rot}$ rotates dprot$\cdot \left (\zeta-\frac{1}{2} \right )$ radians around a random unit vector em-
anating from the mass center, $\zeta$ is a random number in the interval $[0,1[$, and $\delta$ is a random unit vector
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scaled by a random number in the interval [0,dp]. A predefined axis of rotation can be specified as dirrot. For ex-
ample, setting dirrot to [1,0,0], [0,1,0] or [0,0,1] results in rotations about the $x-$, $y-$, and $z-$axis, respectively.
Upon MC movement, the mean squared displacement will be tracked.

7.1.2 Atomic

As moltransrot but instead of operating on the molecular mass center, this translates and rotates individual atoms
in the group. The repeat is set to the number of atoms in the specified group and the displacement parameters dp and
dprot for the individual atoms are taken from the atom properties defined in the topology. Atomic rotation affects
only anisotropic particles such as dipoles, spherocylinders, quadrupoles etc.

An energy histogram of each participating species will be written to disk if the energy_resolution keyword is
set. The value (in kT) specifies the resolution of the histogram binning. The analysis is essentially for free as the
energies are already known from the move.

7.1.3 Cluster Move

This will attempt to rotate and translate clusters of molecular molecules defined by a distance threshold between
mass centers. The threshold can be specified as a single distance or as a complete list of combinations, see
example below. For simulations where small molecules cluster around large macro-molecules, it can be useful to use
the satellites keyword which denotes a list of molecules that can be part of a cluster, but cannot be the cluster
nucleus or starting point. All molecules listed in satellites must be part of molecules. A predefined axis of
rotation can be specified as dirrot. For example, setting dirrot to [1,0,0], [0,1,0] or [0,0,1] results in rotations
about the $x-$, $y-$, or $z-$axis, respectively.

The move is associated with bias, such that the cluster size and composition remain unaltered. If a cluster is larger
than half the simulation box length, only translation will be attempted.

Example:

cluster:
molecules: [protein, cations]
satellites: [cations]
threshold:

protein protein: 25
protein cations: 15
cations cations: 0

dp: 3
dprot: 1
analysis: {file: cluster_shape.dat.gz}

Using analysis the move also reports on the average cluster size; cluster size distribution; and relative shape
anisotropy, $\kappa^2$ as a function of cluster size. If all particles in the cluster are distributed on a sphere then
$\kappa^2=0$, while if on a straight line, $\kappa^2=1$. See the polymershape analysis for more information.

7.1.4 Smarter Monte Carlo

Preferential selction of particles can be enabled via the region keyword which instructs some moves to pick particles
or groups preferentially from a given region. As described in doi:10/frvx8j a bias is introduced which is automatically
accounted for. The preference for sampling inside the region is controlled by p which can be regarded as an outside
update probability. If $p=1$ no preferential sampling is performed, whereas if $p<1$, more sampling is done inside
the region.

For example:

32 Chapter 7. Monte Carlo Moves

topology
http://dx.doi.org/10/cj9gnn
https://doi.org/frvx8j


Faunus

- moltransrot:
...
...
region:

policy: ellipsoid
parallel_radius: 5.0
perpendicular_radius: 4.0
index1: 10
index2: 12
p: 0.2

The available regions are:

Ellipsoid

The connection vector between two (moving) reference particles defines an ellipsoid centered at the midpoint between
the reference particles. The reference particle separation is unimportant, only the direction is used.

Within Molecule (experimental)

Samples from within a threshold from a molecule type. This can be useful to e.g. preferentially sample solvent
molecules around dilute solute molecules. The com keyword is available if the selected molecule has a well-
defined mass-center, i.e. if is_atomic=false. It is also possible to use only the mass center for the moved groups
by setting group_com.

7.2 Internal Degrees of Freedom

7.2.1 Charge Move

This performs a fractional charge move on a specific atom. The charge displacement can be performed linerly along
$q$ or linearly along $q^2$. For the latter the following bias energy will be added to ensure uniform sampling of $q$,

$$ u = k_BT\ln \left ( \left | q^{\prime} / q \right |\right ) $$

Limitations: This move changes the particle charge and therefore cannot be used with splined pair-potentials where
the initial charges from are read from atomlist. Instead, use a hard-coded variant like nonbonded_coulomblj
etc.

7.2.2 Conformational Swap

This will swap between different molecular conformations as defined in the Molecule Properties with traj and
trajweight If defined, the weight distribution is respected, otherwise all conformations have equal intrinsic weight.
Upon insertion, the new conformation is randomly oriented and placed on top of the mass-center of an exising
molecule. That is, there is no mass center movement. If keeppos is activated, the raw coordinates from the confor-
mation is used, i.e. no rotation and no mass-center overlay.

By default all information from the conformation is copied (copy_policy=all), including charges and particle
type. To for example copy only positions, use copy_policy=positions. This can be useful when using specia-
tion moves.
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7.2.3 Pivot

Performs a rotation around a random, harmonic bond vector in molecule, moving all atoms either before or after the
bond with equal probability. Current implementation assumes unbranched chains with all atoms as links, i.e., no side
chains are present. For long polymers (compared to the box size), a large displacement parameter may cause problems
with mass center calculation in periodic systems. This can be caught with the sanity analysis and should it occur,
try one of the following:

• enable skiplarge

• decrease dprot

• increase the simulation container.

The first option will simply reject troublesome configurations and the final output contains information of the skipped
fraction. Skipping is unphysical so make sure the skipped fraction is small.

The default value of repeat is the number of harmonic bonds in the molecule (multiplied by the number of
molecules).

Limitations: Chain bonds have to be ordered sequentially in the topology.

7.2.4 Crankshaft

Performs a rotation of a chain segment between two randomly selected atoms in the molecule.

The default value of repeat is the number of atoms in the molecule minus two (multiplied by the number of
molecules).

7.3 Parallel Tempering

We consider an extended ensemble, consisting of n sub-systems or replicas, each in a distinct thermodynamic state
(different Hamiltonians) and with the total energy

$$ U = \sum_i^n\mathcal{H}_i(\mathcal{R}_i) $$

The parallel tempering move performs a swap move where coordinate spaces (positions, volume) between random,
neighboring sub-systems, i and j, are exchanged,

$$ \mathcal{R}_i^{\prime} = \mathcal{R}_j \quad \text{and} \quad \mathcal{R}_j^{\prime} = \mathcal{R}_i $$

and the energy change of the extended ensemble, $\Delta U_{i\leftrightarrow j}$, is used in the Metropolis acceptance
criteria.

Parallel tempering requires compilation with MPI and the number of replicas, n, exactly matches the number of pro-
cesses. Each replica prefixes input and output files with mpi0., mpi1., etc. and only exchange between neighboring
processes is performed. The move is is performed exactly every nstep Monte Carlo cycle. By default, particle
positions (xyz), charge (q), and atom id (i) are exchanged between replicas and can be controlled with format.

Support for fluctuating number of particles, i.e. grand canonical moves is currently untested and should be considered
experimental.

7.4 Volume Move

Performs a random walk in logarithmic volume,

$$ V^{\prime} = e^{\ln V + \left (\zeta-\frac{1}{2} \right )\cdot dV } $$
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and scales:

1. molecular mass centers

2. positions of free atoms (groups with atomic=true)

by $(V^{\prime}/V)^{1/3}$. This is typically used for the $NPT$ ensemble, and for this an additional pressure term
should be added to the Hamiltonian. In the case of isochoric scaling, the total volume is kept constant and dV
refers to an area change and reported output statistics on volume should be regarded as area. The table below explains
the scaling behavior in different geometries:

For cuboidal geometries, the scaling in each of the specified dimensions is $(V^{\prime}/V)^{1/d}$, where $d=3$ for
isotropic, $d=2$ for xy, and $d=1$ for z.

Warning: Untested for cylinders, slits.

7.5 Reactive Canonical Monte Carlo

The speciation move handles density fluctuations and particle transformations and is the main move for particle in-
sertion, deletion, and swapping used in (semi)-grand canonical ensembles. A reaction from reactionlist is
randomly picked from the topology and is either propagated forward or backward. In Faunus, the total number of
atoms and molecules is constant, but these can be either active or inactive. Deleting a molecule simply deactivates it,
while insertion vice versa activates an inactive molecule. Thus, it is important that the capacity or reservoir of particles
(active plus inactive) is sufficiently large to allow for fluctuations. This is ensured using insertmolecules (see
Topology). A runtime warning will be given, should you run low on particles. Besides deleting/inserting molecules
(mono- or polyatomic), the speciation move performs reactions involving a single-atom ID transformation (e.g., acid-
base reactions). In this case, an particle of type A (part of a mono- or polyatomic molecule) is randomly picked from
the system and all its properties, except its position, are replaced with those of an atom of type B. Such ID transorma-
tions can also involve the addition/deletion of molecules or implicit atoms. For a reaction $$ \sum_i \nu_i M_i = 0 $$
where $M_i$ is the chemical symbol and $\nu_i$ is the stoichiometric coefficient of species $i$ (positive for products
and negative for reagents), the contribution of a speciation move to the energy change is $$ \beta \Delta U = - \sum_i
\ln{ \left ( \frac{ N_i! }{(N_i+\nu_i)!} V^{\nu_i} \right ) } - \ln{ \prod_i a_i^{\nu_i} }, $$ where $N_i$ is the number
of particles of species $i$ in the current state and $a_i$ is the activity of species $i$.

For more information, see the Topology section and doi:10/fqcpg3.

7.6 Replay

Use next frame of the recorded trajectory as a move. The move is always unconditionally accepted, hence it may
be used to replay a simulation, e.g., for analysis. Currently only Gromacs compressed trajectory file format (XTC)
is supported. Note that total number of steps (macro × micro) should correspond to the number of frames in the
trajectory.
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CHAPTER 8

Langevin Dynamics

Conducting hybrid molecular dynamics – Monte Carlo (MDMC) schemes is possible by addition of the Langevin
(pseudo) move in the moves section. Example:

moves:
- langevin_dynamics:

nsteps: 25
integrator: {time_step: 0.005, friction: 5}

- ...

This move will solve the Langevin equation for the particles in the system on the form

$$ d\begin{bmatrix} \mathbf{q} \ \mathbf{p} \end{bmatrix} = \underbrace{\begin{bmatrix} M^{-
1}\mathbf{q} \ 0 \end{bmatrix} \mathrm{d}t}_{\text{A}} + \underbrace{\begin{bmatrix} 0 \ -\nabla
U(\mathbf{q}) \end{bmatrix}\mathrm{d}t}_{\text{B}} + \underbrace{\begin{bmatrix} 0 \ -\gamma \mathbf{p} +
\sqrt{2\text{k}_{\mathrm{b}}T\gamma} \sqrt{M} ~\mathrm{d}\mathbf{W} \end{bmatrix}}_{\text{O}} $$

Where A, B, and O makes up the terms for solving the Langevin equation, which can be individually solved to
obtain a trajectory given by \begin{aligned} \varphi^{\mathrm{A}}(\mathbf{q}, \mathbf{p}) &= \left(\mathbf{q}
+ \Delta t \sqrt{M}~ \mathbf{p}, \mathbf{p}\right) \ \varphi^{\mathrm{B}}(\mathbf{q}, \mathbf{p}) &=
\left(\mathbf{q}, \mathbf{p} - \Delta t \nabla U(\mathbf{q})\right) \ \varphi^{\mathrm{O}}(\mathbf{q}, \mathbf{p})
&= \left(\mathbf{q}, e^{-\gamma \Delta t}\mathbf{p} + \sqrt{\mathrm{k}_{\mathrm{B}}T (1 - e^{-2\gamma \Delta
t})} \sqrt{M} \mathbf{R} \right) \end{aligned}

We currently use the splitting scheme “BAOAB” (Symmetric Langevin Velocity-Verlet) since it is less errorprone with
increasing timestep Leimkuhler & Matthews, pp. 279-281.
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CHAPTER 9

Analysis

Faunus can perform on-the-fly analysis during simulation by allowing for an arbitrary number of analysis functions to
be added. The list of analysis is defined in the analysis section at the top level input:

analysis:
- systemenergy: {file: energy.dat.gz, nstep: 500, nskip: 2000}
- xtcfile: {file: traj.xtc, nstep: 1000}
- widom: {molecule: water, ninsert: 20, nstep: 50}
- molrdf: {name1: water, name2: water, nstep: 100,

dr: 0.1, dim: 3, file: rdf.dat}
- ...

All analysis methods support the nstep keyword that defines the interval between sampling points and the nskip
keyword that defines the number of initial steps that are excluded from the analysis. In addition all analysis provide
output statistics of number of sample points, and the relative run-time spent on the analysis.

9.1 Density

9.1.1 Atomic Density

This calculates the average density, $\langle N_i/V \rangle$ of atoms in atomic groups which may fluctuate in e.g.
the isobaric ensemble or the Grand Canonical ensemble. For atomic groups, densities of individual atom types are
reported. The analysis also files probability density distributions of atomic and polyatomic molecules as well as of
atoms involved in id transformations, e.g., acid-base equilibria. The filename format is rho-@name.dat.

9.1.2 Molecule Density

This calculates the average density, $\langle N_i/V \rangle$ of molecular groups which may fluctuate in e.g. the
isobaric ensemble or the Grand Canonical ensemble.
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9.1.3 Density Profile

Calculates the summed density of atoms in spherical, cylindrical or planar shells around origo which by default is
the center of the simulation box:

$$ \rho(r) = \frac{\langle N(r) \rangle}{V(r)} $$

The sum of coefficients in dir determines the volume element normalisation:

This can be used to obtain charge profiles, measure excess pressure etc.

9.1.4 Density Slice

Calculates the density in cuboidal slices of thickness dz along the z axis. If an atom name is specified for the option
atomcom, the z-position of each atom is calculated with respect to the center of mass of the atoms of the given type.

9.2 Structure

9.2.1 Atomic $g(r)$

Samples the pair correlation function between atom id’s i and j,

$$ g_{ij}(r) = \frac{ N_{ij}(r) }{ \sum_{r=0}^{\infty} N_{ij}(r) } \cdot \frac{ \langle V \rangle }{ V(r) } $$

where $N_{ij}(r)$ is the number of observed pairs, accumulated over the entire ensemble, in the separation interval
$[r, r+dr]$ and $V(r)$ is the corresponding volume element which depends on dimensionality, dim.

By specifying slicedir, the RDF is calculated only for atoms within a cylinder or slice of given thickness. For
example, with slicedir=[0,0,1] and thickness=1, the RDF is calculated along z for atoms within a cylinder
of radius 1 Å. This quasi-1D RDF should be normalized with dim=1. Likewise, with slicedir=[1,1,0] and
thickness=2, the RDF is calculated in the xy plane for atoms with z coordinates differing by less than 2 Å. This
quasi-2D RDF should be normalized with dim=2.

9.2.2 Molecular $g(r)$

Same as atomrdf but for molecular mass-centers.

9.2.3 Dipole-dipole Correlation

Sample the dipole-dipole angular correlation, $\langle \pmb{\hat{\mu}}(0)\cdot \pmb{\hat{\mu}}(r) \rangle$, be-
tween dipolar atoms and as a function of separation, r. In addition, the radial distribution function, $g(r)$ is sampled
and saved to {file}.gofr.dat.

9.2.4 Structure Factor

The isotropically averaged static structure factor between $N$ point scatterers is calculated using the Debye formula,

$$ S(q) = 1 + \frac{2}{N} \left \langle \sum_{i=1}^{N-1}\sum_{j=i+1}^N \frac{\sin(qr_{ij})}{qr_{ij}} \right \rangle
$$

The selected molecules can be treated either as single point scatterers (com=true) or as a group of individual
point scatterers of equal intensity, i.e., with a form factor of unity.
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The computation of the structure factor is rather computationally intensive task, scaling quadratically with the number
of particles and linearly with the number of scattering vector mesh points. If OpenMP is available, multiple threads
may be utilized in parallel to speed it up the analysis.

The explicit scheme is recommended for cuboids with PBC and the calculation is performed by explicitly av-
eraging the following equation over the 3+6+4 directions obtained by permuting the crystallographic index [100],
[110], [111] to define the scattering vector $\mathbf{q} = 2\pi p/L(h,k,l)$ where $p=1,2,\dots,p_{max}$.

$$ S(q) = \frac{1}{N} \left < \left ( \sum_i^N \sin(\mathbf{qr}_i) \right )^2 + \left ( \sum_j^N \cos(\mathbf{qr}_j)
\right )^2 \right > $$

The sampled $q$-interval is always $\left [ 2\pi/L„ 2\pi p_{max} \sqrt{3} / L \right ]$, $L$ being the box side length.
Only cubic boxes have been tested, but the implementation respects cuboidal systems (untested). For more informa-
tion, see doi:10.1063/1.449987.

9.2.5 Atomic Inertia Eigenvalues

This calculates the inertia eigenvalues for all particles having a given id. The inertia tensor is defined as

$$ I = \sum_{i=1}^N m_i ( | \bf{t_i} |^2 \mathrm{I} - \bf{t_i} \bf{t_i}^T ) $$

where $\bf{t_i} = \bf{r_i} - \bf{cm}$, $\bf{r_i}$ is the coordinate of the $i$th particle, $\bf{cm}$ is the position
of the mass center of the whole group of atoms, $m_i$ is the molecular weight of the $i$th particle, $\bf{I}$ is the
identity matrix and $N$ is the number of atoms.

9.2.6 Inertia Tensor

This calculates the inertia eigenvalues and the principal axis for a range of atoms within a molecular group of given
index. Atom coordinates are considered with respect to the mass center of the group. For protein complex, the
analysis can be used to calculate the principal axes of the constituent monomers, all originating at the mass center of
the complex. The inertia tensor is defined as

$$ I = \sum_{i=1}^N m_i ( | \bf{t_i} |^2 \mathrm{I} - \bf{t_i} \bf{t_i}^T ) $$

where $\bf{t_i} = \bf{r_i} - \bf{cm}$, $\bf{r_i}$ is the coordinate of the $i$th particle, $\bf{cm}$ is the position
of the mass center of the whole group of atoms, $m_i$ is the molecular weight of the $i$th particle, $\bf{I}$ is the
identity matrix and $N$ is the number of atoms.

9.2.7 Polymer Shape

This calculates the radius of gyration; end-to-end distance; and related fluctuations for a molecular group. A his-
togram of the radius of gyration will be saved to disk with the name gyration_{molecule}.dat. The output
nomenclature follows IUPAC’s recommendations. For further reading regarding gyration tensor analysis and shape,
see:

• doi:10.1021/ma00148a028

• doi:10.1063/1.1730022

• wikipedia

From the principal moments, $\lambda$, the following shape descriptors are calculated:

• asphericity, $b = \lambda _{{z}}^{{2}}-{\frac{1}{2}}\left(\lambda_{{x}}^{{2}}+\lambda
_{{y}}^{{2}}\right)$.

• acylindricity, $c = \lambda _{{y}}^{{2}}-\lambda _{{x}}^{{2}}$
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• relative shape anisotropy, $\kappa^2 ={\frac{3}{2}}{\frac {\lambda_{{x}}^{{4}}+\lambda_{{y}}^{{4}}+\lambda_{{z}}^{{4}}}{(\lambda
_{{x}}^{{2}}+\lambda _{{y}}^{{2}}+\lambda _{{z}}^{{2}})^{{2}}}}-{\frac{1}{2}}$

Note: The ability to select several molecules (molecules keyword) was removed in version 2.5. Instead, add
multiple instances of polymershape.

9.2.8 Molecular Conformation

For molecules that can have multiple conformations (using conformational swap moves), this creates a histogram of
observed conformations for a given molecule type.

9.2.9 Group Matrix

As a function of steps, this stores a matrix of group to group properties. The generated matrix is square, symmetric,
and with dimensions of the total number of groups in the system (active and inactive). Note that inactive groups are
always excluded from the analysis.

The data is streamed in the sparse Matrix Market format and can be further reduced by applying an optional filter
defined by an ExprTk expression. In the following example we analyse the nonbonded energy between active
molecules of type colloid and only values smaller than -1.0 kT are stored:

analysis:
- groupmatrix:

nstep: 20
molecules: [colloid]
property: energy
filter: "value < -1.0"
file: matrices.dat.gz

The generated stream of sparse matrices can be loaded into Python for further analysis of e.g. clustering:

from itertools import groupby
from scipy.io import mmread
from io import StringIO
import gzip

with gzip.open('matrices.dat.gz', 'rt') as f:
for lines in (lines for frame, lines in groupby(f, lambda line: line != '\n') if

→˓frame):
pair_matrix = mmread(StringIO(''.join(lines))).todense()

9.3 Charge Properties

9.3.1 Molecular Multipoles

Calculates average molecular multipolar moments and their fluctuations.

9.3.2 Multipole Moments

For a range of atoms within a molecular group of given index, this calculates the total charge and dipole moment, as
well as the eigenvalues and the major axis of the quadrupole tensor. Atom coordinates are considered with respect to
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the mass center of the group. For a protein complex, the analysis can be used to calculate, e.g., the dipole vectors of
the constituent monomers, all originating at the mass center of the complex. The quadrupole tensor is defined as

$$ Q = \frac{1}{2} \sum_{i=1}^N q_i ( 3 \bf{t_i} \bf{t_i}^T - | \bf{t_i} |^2 \mathrm{I}) $$

where $\bf{t_i} = \bf{r_i} - \bf{cm}$, $\bf{r_i}$ is the coordinate of the $i$th particle, $\bf{cm}$ is the position of
the mass center of the whole group of atoms, $q_i$ is the charge of the $i$th particle, $\bf{I}$ is the identity matrix
and $N$ is the number of atoms.

9.3.3 Electric Multipole Distribution

This will analyse the electrostatic energy between two groups as a function of their mass center separation. Sampling
consists of the following:

1. The exact electrostatic energy is calculated by explicitly summing Coulomb interactions between charged par-
ticles

2. Each group - assumed to be a molecule - is translated into a multipole (monopole, dipole, quadrupole)

3. Multipolar interaction energies are calculated, summed, and tabulated together with the exact electrostatic inter-
action energy. Ideally (infinite number of terms) the multipoles should capture full electrostatics

The points 1-3 above will be done as a function of group-to-group mass center separation, $R$ and moments on
molecule $a$ and $b$ with charges $q_i$ in position $\boldsymbol{r}_i$ with respect to the mass center are calculated
according to:

$$ q_{a/b} = \sum_i q_i \quad \quad \boldsymbol{\mu}_{a/b} = \sum_i q_i\mathbf{r_i} $$

$$ \boldsymbol{Q}_{a/b} = \frac{1}{2} \sum_i q_i\mathbf{r_i} \mathbf{r_i}^T $$

And, omitting prefactors here, the energy between molecule $a$ and $b$ at $R$ is:

$$ u_{\text{ion-ion}} = \frac{q_aq_b}{R} \quad \quad u_{\text{ion-dip}} = \frac{q_a \boldsymbol{\mu}_b
\boldsymbol{R}}{R^3} + . . . $$

$$ u_{\text{dip-dip}} = \frac{\boldsymbol{\mu_a}\boldsymbol{\mu_b} }{ R^3 } - \frac{3 (\boldsymbol{\mu_a}
\cdot \boldsymbol{R}) ( \boldsymbol{\mu_b}\cdot\boldsymbol{R}) }{R^5} $$

$$ u_{\text{ion-quad}} = \frac{ q_a \boldsymbol{R}^T \boldsymbol{Q}_b \boldsymbol{R} }{R^5}-\frac{q_a
\mbox{tr}(\boldsymbol{Q}_b) }{R^3}+ . . . $$

$$ u_{\text{total}} = u_{\text{ion-ion}} + u_{\text{ion-dip}} + u_{\text{dip-dip}} + u_{\text{ion-quad}} $$

$$ u_{\text{exact}} = \sum_i^a\sum_j^b \frac{q_iq_j}{ | \boldsymbol{r_i} - \boldsymbol{r_j} | } $$

During simulation, the above terms are thermally averaged over angles, co-solute degrees of freedom etc. Note also
that the moments are defined with respect to the mass center, not charge center. While for globular macromolecules
the difference between the two is often small, the latter is more appropriate and is planned for a future update.

The input keywords are:

9.3.4 Charge Fluctuations

For a given molecule, this calculates the average charge and standard deviation per atom, and the most probable species
(atom name) averaged over all present molecules. A PQR file of a random molecule with average charges and most
probable atomic species can be saved.
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9.3.5 Electric Potential

This calculates the mean electric potential, $\langle \phi_i \rangle$ and correlations, $\langle \phi_1\phi_2 . . . \rangle$
at an arbitrary number of target positions in the simulation cell. The positions, given via structure, can be aug-
mented using a policy:

Histograms of the correlation and the potentials at the target points are saved to disk.

Example:

- electricpotential:
nstep: 20
ncalc: 10
epsr: 80
type: plain
policy: random_walk
stride: 10 # in angstrom
structure:

- [0,0,0] # defines two target points...
- [0,0,0] # ...positions are randomly set

9.4 Reaction Coordinate

This saves a given reaction coordinate as a function of steps. The generated output file has three columns:

1. step number

2. the value of the reaction coordinate

3. the cummulative average of all preceding values.

Optional gzip compression can be enabled by suffixing the filename with .gz, thereby reducing the output file size
significantly. The folowing example reports the mass center $z$ coordinate of the first molecule every 100th steps:

- reactioncoordinate:
{nstep: 100, file: cmz.dat.gz, type: molecule, index: 0, property: com_z}

In the next example, the angle between the principal molecular axis and the $xy$-plane is reported by diagonalising
the gyration tensor to find the principal moments:

- reactioncoordinate:
{nstep: 100, file: angle.dat.gz, type: molecule, index: 0, property: angle, dir:

→˓[0,0,1]}

9.4.1 Processing

In the above examples we stored two properties as a function of steps. To join the two files and calculate the average
angle as a function of the mass center coordinate, z, the following python code may be used:

import numpy as np
from scipy.stats import binned_statistic

def joinRC(filename1, filename2, bins):
x = np.loadtxt(filename1, usecols=[1])
y = np.loadtxt(filename2, usecols=[1])

(continues on next page)
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(continued from previous page)

means, edges, bins = binned_statistic(x, y, 'mean', bins)
return (edges[:-1] + edges[1:]) / 2, means

cmz, angle = joinRC('cmz.dat.gz', 'angle.dat.gz', 100)
np.diff(cmz) # --> cmz resolution; control w. `bins`

Note that Numpy automatically detects and decompresses .gz files. Further, the command line tools zcat, zless
etc. are useful for handling compressed files.

9.5 System

9.5.1 System Sanity

It is wise to always assert that the simulation is internally sane. This analysis checks the following and aborts if insane:

• all particles are inside the simulation boundaries

• molecular mass centers are correct

• . . . more to be added.

To envoke, use for example - sanity: {nstep: 1} by default, nstep=-1, meaning it will be run at the
end of simulation, only. This is not a particularly time-consuming analysis and we recommend that it is enabled for
all simulations.

9.5.2 System Energy

Calculates the energy contributions from all terms in the Hamiltonian and outputs to a file as a function of steps. If
filename ends with .csv, a comma separated value file will be saved, otherwise a simple space separated file with a
single hash commented header line. To enable GZip compression, suffix the filename with .gz. All units in $k_BT$.

9.5.3 Penalty function

If a penalty function is added to the hamiltonian, this can dump it to disk at a specified interval. At each sample event,
the filename counter is incremented and follows the convention. In addition to the penalty energy, this will also save
the current (numbered) histogram.

9.6 Perturbations

9.6.1 Virtual Volume Move

Performs a virtual volume move by scaling the simulation volume to $V+\Delta V$ along with molecular mass centers
and atomic positions. The excess pressure is evaluated as a Widom average:

$$ p^{ex} = \frac{k_BT}{\Delta V} \ln \left\langle e^{-\delta u / k_BT} \right\rangle_{NVT} $$

If file is given, the pressure as a function of steps is written to a (compressed) file.

By default, the volume is isotropically scaled, but for more advanced applications of volume perturbations - pressure
tensors, surface tension etc., see here. If a non-isotropic scaling is used, an extra column will be added to the output
file containing the change in area (xy) or length (z). See also the documentation for the Monte Carlo Volume move.
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9.6.2 Virtual Translate Move

Performs a virtual displacement, $dL$, of a single molecule in the direction dir and measure the force by pertur-
bation,

$$ f = \frac {k_BT \ln \langle \exp{\left (-dU/k_BT \right )} \rangle_0 }{ dL } $$

9.6.3 Widom Insertion

This will insert a non-perturbing ghost molecule into the system and calculate a Widom average to measure the free
energy of the insertion process, i.e. the excess chemical potential:

$$ \mu^{ex} = -k_BT \ln \left\langle e^{-\delta u/k_BT} \right\rangle_0 $$

where $\delta u$ is the energy change of the perturbation and the average runs over the unperturbed ensemble. If the
molecule has atomic=true, $\delta u$ includes the internal energy of the inserted group. This is useful for example
to calculate the excess activity coefficient of a neutral salt pair. Upon insertion, random positions and orientations are
generated. For use with rod-like particles on surfaces, the absz keyword may be used to ensure orientations on only
one half-sphere.

Exactly one inactive molecule must be added to the simulation using the inactive keyword when inserting the
initial molecules in the topology.

9.7 Positions and Trajectories

9.7.1 Save State

Saves the current configuration or the system state to file. For grand canonical simulations, the PQR file format sets
charges and radii of inactive particles to zero and positions them in one corner of the box.

If the suffix is json or ubj (binary), a single state file that can be used to restart the simulation is saved with the
following information:

• topology: atom, molecule

• particle and group properties incl. positions

• geometry

• state of random number generator (if saverandom=true)

If nstep is greater than zero, the output filename will be tagged with the current step count.

9.7.2 Space Trajectory (experimental)

Save all particle and group information to a compressed, binary trajectory format. The following properties are saved:

• all particle properties (id, position, charge, dipole etc.)

• all group properties (id, size, capacity etc.)

• todo: geometry, energy

The file suffix must be either .traj (uncomressed) or .ztraj (compressed). For the latter, the file size is reduced
by roughly a factor of two using zlib compression.
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9.7.3 XTC trajectory

Generates a Gromacs XTC trajectory file with particle positions and box dimensions as a function of steps. Both active
and inactive atoms are saved.

9.7.4 Charge-Radius trajectory

Most trajectory file formats do not support a fluctuating number of particles. For each nstep, this analysis files
charge and radius information for all particles. Inactive particles are included with zero charge and radius.

Using a helper script for VMD (see scripts/) this information can be loaded to visualise flutuating charges and or
number of particles. The script should be sourced from the VMD console after loading the trajectory, or invoked when
launching VMD:

vmd confout.pqr traj.xtc -e scripts/vmd-qrtraj.tcl

9.7.5 Patchy Sphero-Cylinder trajectory

This will save a text trajectory containing the number of particles, box dimensions, midpoint positions, direction, and
patch direction of PSCs. Using the provided python 2 script, this can be used to visualise a simulation in Visual
Molecular Dynamics (VMD):

python2 psc2vmd.py -i tracjectory.dat -o movie.pdb --psf movie.psf
vmd -e vmd.script

9.7.6 Displacement

This tracks atom or molecule mass center displacements with respect to a (dynamic) reference position that can be
updated at given intervals. To access distances larger than the box dimensions, jumps across periodic boundaries
are detected whereby the position enters a new unit cell. A boundary jump is defined as a particle movement larger
than max_displacement which by default is set to one fourth of the box length. A histogram of the squared
displacements in a given time interval () is saved to disk. The variant displacement_com expects a molecular
molecule and analyses mass centers instead of single particle positions.
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